
Design
Patterns in C#

A Hands-on Guide
with Real-world Examples
—
Second Edition
—
Vaskaran Sarcar
Foreword by Priya Shimanthoor

Design Patterns in C#
A Hands-on Guide with
Real-world Examples

Second Edition

Vaskaran Sarcar
Foreword by Priya Shimanthoor

Design Patterns in C#: A Hands-on Guide with Real-world Examples

ISBN-13 (pbk): 978-1-4842-6061-6 ISBN-13 (electronic): 978-1-4842-6062-3
https://doi.org/10.1007/978-1-4842-6062-3

Copyright © 2020 by Vaskaran Sarcar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava
Development Editor: Laura Berendson
Coordinating Editor: Shrikant Vishwakarma

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint, paperback,
or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-6061-6. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Vaskaran Sarcar
Garia, Kolkata, West Bengal, India

https://doi.org/10.1007/978-1-4842-6062-3

This book is dedicated to all the unsung heroes and volunteers
who are continuously fighting at the frontlines of the COVID-19

battle to save humanity and this beautiful world.

v

About the Author ��xxi

About the Technical Reviewers ��xxiii

Foreword ���xxv

Acknowledgments ���xxvii

Preface ���xxix

Table of Contents

Part I: Gang of Four Design Patterns �� 1

Part I�A: Creational Patterns ��� 3

Chapter 1: Singleton Pattern �� 5

GoF Definition �� 5

Concept ��� 5

Real-World Example �� 5

Computer-World Example ��� 6

Implementation ��� 6

Class Diagram ��� 8

Solution Explorer View ��� 8

Demonstration 1 �� 9

Output �� 11

Analysis ��� 12

Q&A Session �� 15

Alternative Implementation ��� 22

Analysis ��� 23

Q&A Session �� 25

vi

Chapter 2: Prototype Pattern �� 27

GoF Definition �� 27

Concept ��� 27

Real-World Example �� 27

Computer-World Example ��� 28

Implementation ��� 29

Class Diagram ��� 31

Solution Explorer View ��� 32

Demonstration 1 �� 33

Output �� 36

Modified Implementation �� 36

Class Diagram ��� 36

Demonstration 2 �� 37

Output �� 39

Analysis ��� 39

Q&A Session �� 41

Shallow Copy vs� Deep Copy ��� 42

Demonstration 3 �� 44

Output from a Shallow Copy �� 47

Analysis ��� 48

Output from Deep Copy ��� 49

Analysis ��� 50

Q&A Session �� 50

Demonstration 4 �� 51

Output �� 54

Analysis ��� 55

Chapter 3: Builder Pattern �� 57

GoF Definition �� 57

Concept ��� 57

Real-World Example �� 58

Computer-World Example ��� 58

Table of ConTenTs

vii

Implementation ��� 58

Class Diagram ��� 60

Solution Explorer View ��� 60

Demonstration 1 �� 62

Output �� 67

Analysis ��� 68

Q&A Session �� 68

An Alternative Implementation �� 70

Class Diagram ��� 73

Solution Explorer View ��� 73

Demonstration 2 �� 74

Output �� 78

Analysis ��� 79

Q&A Session �� 79

Chapter 4: Factory Method Pattern �� 81

GoF Definition �� 81

Concept ��� 81

Real-World Example �� 81

Computer-World Example ��� 82

Implementation ��� 82

Class Diagram ��� 83

Solution Explorer View ��� 83

Demonstration 1 �� 84

Output �� 89

Modified Implementation 1 ��� 89

Partial Demonstration 1 ��� 89

Output �� 91

Analysis ��� 91

Q&A Session �� 91

Table of ConTenTs

viii

Modified Implementation 2 ��� 93

Partial Demonstration 2 ��� 94

Output �� 96

Chapter 5: Abstract Factory Pattern ��� 97

GoF Definition �� 97

Concept ��� 97

Real-World Example �� 98

Computer-World Example ��� 98

Implementation ��� 98

Class Diagram ��� 101

Solution Explorer View ��� 101

Demonstration 1 �� 102

Output �� 106

Q&A Session �� 107

Part I�B: Structural Patterns ��� 111

Chapter 6: Proxy Pattern �� 113

GoF Definition �� 113

Concept ��� 113

Real-World Example �� 113

Computer-World Example ��� 114

Implementation ��� 114

Class Diagram ��� 116

Solution Explorer View ��� 116

Demonstration 1 �� 117

Output �� 119

Q&A Session �� 119

Demonstration 2 �� 122

Output �� 125

Table of ConTenTs

ix

Chapter 7: Decorator Pattern �� 127

GoF Definition �� 127

Concept ��� 127

Real-World Example �� 128

Computer-World Example ��� 129

Implementation ��� 129

Class Diagram ��� 132

Solution Explorer View ��� 133

Demonstration ��� 134

Output �� 138

Q&A Session �� 139

Chapter 8: Adapter Pattern ��� 143

GoF Definition �� 143

Concept ��� 143

Real-World Example �� 143

Computer-World Example ��� 145

Implementation ��� 145

Class Diagram ��� 148

Solution Explorer View ��� 149

Demonstration 1 �� 150

Output �� 153

Analysis ��� 153

Types of Adapters �� 154

Object Adapters ��� 154

Class Adapters ��� 155

Q&A Session �� 155

Demonstration 2 �� 155

Output �� 159

Analysis ��� 159

Q&A Session �� 159

Table of ConTenTs

x

Chapter 9: Facade Pattern �� 163

GoF Definition �� 163

Concept ��� 163

Real-World Example �� 163

Computer-World Example ��� 164

Implementation ��� 164

Class Diagram ��� 168

Solution Explorer View ��� 169

Demonstration ��� 170

Output �� 174

Q&A Session �� 175

Chapter 10: Flyweight Pattern �� 177

GoF Definition �� 177

Concept ��� 177

Real-World Example �� 178

Computer-World Example ��� 178

Implementation ��� 179

Class Diagram ��� 183

Solution Explorer View ��� 184

Demonstration 1 �� 184

Output �� 190

Analysis ��� 192

Q&A Session �� 192

Demonstration 2 �� 195

Output �� 196

Analysis ��� 197

Chapter 11: Composite Pattern ��� 199

GoF Definition �� 199

Concept ��� 199

Real-World Example �� 200

Table of ConTenTs

xi

Computer-World Example ��� 200

Implementation ��� 200

Class Diagram ��� 201

Solution Explorer View ��� 202

Demonstration ��� 203

Output �� 208

Q&A Session �� 209

Chapter 12: Bridge Pattern ��� 211

GoF Definition �� 211

Concept ��� 211

Real-World Example �� 211

Computer-World Example ��� 212

Implementation ��� 212

Class Diagram ��� 215

Solution Explorer View ��� 215

Demonstration 1 �� 216

Output �� 220

Additional Implementation �� 220

Class Diagram ��� 224

Demonstration 2 �� 225

Output �� 229

Q&A Session �� 229

Part I�C: Behavioral Patterns �� 233

Chapter 13: Visitor Pattern ��� 235

GoF Definition �� 235

Concept ��� 235

Real-World Example �� 238

Computer-World Example ��� 238

Table of ConTenTs

xii

Implementation ��� 238

Class Diagram ��� 242

Solution Explorer View ��� 243

Demonstration 1 �� 244

Output �� 249

Q&A Session �� 249

Using Visitor Pattern and Composite Pattern Together ��� 254

Step 1 �� 257

Step 2 �� 258

Step 3 �� 259

Step 4 �� 259

Step 5 �� 260

Demonstration 2 �� 260

Output �� 267

Chapter 14: Observer Pattern ��� 269

GoF Definition �� 269

Concept ��� 269

Real-World Example �� 273

Computer-World Example ��� 273

Implementation ��� 273

Class Diagram ��� 277

Solution Explorer View ��� 278

Demonstration ��� 279

Output �� 283

Q&A Session �� 284

Chapter 15: Strategy Pattern �� 287

GoF Definition �� 287

Concept ��� 287

Real-World Example �� 287

Computer-World Example ��� 288

Table of ConTenTs

xiii

Implementation ��� 288

Class Diagram ��� 290

Solution Explorer View ��� 291

Demonstration ��� 292

Output �� 295

Q&A Session �� 296

Chapter 16: Template Method Pattern �� 299

GoF Definition �� 299

Concept ��� 299

Real-World Example �� 299

Computer-World Example ��� 300

Implementation ��� 300

Class Diagram ��� 302

Solution Explorer View ��� 303

Demonstration 1 �� 303

Output �� 306

Q&A Session �� 306

Demonstration 2 �� 309

Output �� 312

Chapter 17: Command Pattern ��� 315

GoF Definition �� 315

Concept ��� 315

Real-World Example �� 316

Computer-World Example ��� 316

Implementation ��� 316

Class Diagram ��� 319

Solution Explorer View ��� 319

Demonstration 1 �� 321

Output �� 325

Table of ConTenTs

xiv

Q&A Session �� 326

Modified Implementation �� 329

Demonstration 2 �� 331

Output �� 335

Chapter 18: Iterator Pattern ��� 337

GoF Definition �� 337

Concept ��� 337

Real-World Example �� 338

Computer-World Example ��� 339

Implementation ��� 339

Class Diagram ��� 340

Solution Explorer View ��� 341

Demonstration 1 �� 342

Output �� 347

Demonstration 2 �� 348

Output �� 352

Q&A Session �� 352

Chapter 19: Memento Pattern ��� 355

GoF Definition �� 355

Concept ��� 355

Real-World Example �� 355

Computer-World Example ��� 356

Implementation ��� 356

Class Diagram ��� 358

Solution Explorer View ��� 359

Demonstration 1 �� 359

Output �� 364

Analysis ��� 365

Table of ConTenTs

xv

Q&A Session �� 365

Modified Implementation �� 367

Class Diagram ��� 368

Solution Explorer View ��� 369

Demonstration 2 �� 369

Output �� 374

Chapter 20: State Pattern ��� 377

GoF Definition �� 377

Concept ��� 377

Real-World Example �� 378

Computer-World Example ��� 378

Implementation ��� 378

Class Diagram ��� 381

Solution Explorer View ��� 381

Demonstration ��� 383

Output �� 388

Q&A Session �� 389

Chapter 21: Mediator Pattern ��� 393

GoF Definition �� 393

Concept ��� 393

Real-World Example �� 393

Computer-World Example ��� 394

Implementation ��� 394

Class Diagram ��� 400

Solution Explorer View ��� 401

Demonstration 1 �� 401

Output �� 407

Analysis ��� 408

Table of ConTenTs

xvi

Q&A Session �� 408

Modified Implementation �� 409

Demonstration 2 �� 410

Output �� 415

Chapter 22: Chain of Responsibility Pattern ��� 419

GoF Definition �� 419

Concept ��� 419

Real-World Example �� 420

Computer-World Example ��� 420

Implementation ��� 421

Class Diagram ��� 426

Solution Explorer View ��� 427

Demonstration ��� 428

Output �� 433

Q&A Session �� 433

Chapter 23: Interpreter Pattern �� 437

GoF Definition �� 437

Concept ��� 437

Real-World Example �� 440

Computer-World Example ��� 440

Implementation ��� 441

Class Diagram ��� 443

Solution Explorer View ��� 444

Demonstration 1 �� 445

Output �� 449

Another Implementation ��� 449

Class Diagram ��� 454

Solution Explorer View ��� 454

Demonstration 2 �� 455

Output �� 461

Q&A Session �� 462

Table of ConTenTs

xvii

Part II: Additional Design Patterns ��� 463

Chapter 24: Simple Factory Pattern ��� 465

Definition ��� 465

Concept ��� 465

Real-World Example �� 465

Computer-World Example ��� 466

Implementation ��� 466

Class Diagram ��� 468

Solution Explorer View ��� 469

Demonstration ��� 470

Output �� 473

Q&A Session �� 474

Chapter 25: Null Object Pattern �� 477

Definition ��� 477

Concept ��� 477

A Faulty Program ��� 478

Output with Valid Input �� 481

Analysis with an Unwanted Input �� 481

A Potential Fix �� 482

Analysis ��� 482

Real-World Example �� 483

Computer-World Example ��� 483

Implementation ��� 483

Class Diagram ��� 485

Solution Explorer View ��� 486

Demonstration ��� 487

Output �� 490

Analysis ��� 491

Q&A Session �� 491

Table of ConTenTs

xviii

Chapter 26: MVC Pattern �� 495

Definition ��� 495

Concept ��� 496

Key Points to Remember ��� 496

Variation 1 ��� 497

Variation 2 ��� 498

Variation 3 ��� 498

Real-World Example �� 499

Computer-World Example ��� 500

Implementation ��� 501

Class Diagram ��� 503

Solution Explorer View ��� 505

Demonstration 1 �� 506

Output �� 513

Q&A Session �� 515

Modified Output ��� 518

Chapter 27: Patterns in Asynchronous Programming �� 521

Overview ��� 521

Using Synchronous Approach ��� 523

Demonstration 1 �� 523

Using Thread Class ��� 525

Demonstration 2 �� 525

Q&A Session �� 527

Using ThreadPool Class ��� 527

Demonstration 3 �� 530

Q&A Session �� 534

Using Lambda Expression with the ThreadPool Class �� 534

Demonstration 4 �� 535

Using IAsyncResult Pattern ��� 538

Polling Using Asynchronous Delegates ��� 538

Demonstration 5 �� 538

Table of ConTenTs

xix

Q&A Session �� 543

Using AsyncWaitHandle of IAsyncResult ��� 544

Demonstration 6 �� 545

Using Asynchronous Callback�� 548

Demonstration 7 �� 549

Q&A Session �� 552

Using Event-based Asynchronous Pattern �� 555

Demonstration 8 �� 556

Q&A Session �� 565

Understanding Tasks ��� 565

Demonstration 9 �� 568

Using Task-based Asynchronous Pattern (TAP) ��� 571

Demonstration 10 �� 571

Demonstration 11 �� 573

Q&A Session �� 578

Using the async and await Keywords �� 579

Demonstration 12 �� 581

Demonstration 13 �� 587

Part III: Final Thoughts on Design Patterns �� 593

Chapter 28: Criticisms of Design Patterns �� 595

Q&A Session �� 598

Chapter 29: AntiPatterns �� 601

Overview ��� 601

A Brief History of AntiPatterns �� 602

Examples of AntiPatterns �� 603

Types of AntiPatterns �� 605

Q&A Session �� 606

Chapter 30: FAQ �� 609

Table of ConTenTs

xx

 Appendix A: A Brief Overview of GoF Design Patterns �� 615

 Q&A Session �� 619

 Appendix B: Useful Resources �� 621

 Appendix C: The Road Ahead �� 623

 Appendix D: Important Updates in the Second Edition ��� 625

 Index ��� 629

Table of ConTenTs

xxi

About the Author

Vaskaran Sarcar obtained his master’s degree in software

engineering from Jadavpur University, Kolkata (India), and

an MCA from Vidyasagar University, Midnapore (India). He

was a National Gate Scholar (2007–2009), and he has more

than 12 years of experience in education and the IT industry.

Vaskaran devoted his early years (2005–2007) in teaching at

various engineering colleges. Later, he joined HP India PPS

R&D Hub Bangalore, where he worked until August 2019.

At the time of his retirement from the IT industry, he was a

Senior Software Engineer and Team Lead at HP. Following

his passion, Vaskaran is now an independent full-time

author. His books include the following:

• Getting Started with Advanced C# (Apress, 2020)

• Interactive Object-Oriented Programming in Java Second Edition

(Apress, 2019)

• Java Design Patterns Second Edition (Apress, 2019)

• Design Patterns in C# (Apress, 2018)

• Interactive C# (Apress, 2017)

• Interactive Object-Oriented Programming in Java (Apress, 2016)

• Java Design Patterns (Apress, 2016)

• C# Basics: Test Your Skills (Createspace, 2015)

• Operating System: Computer Science Interview Series

(Createspace, 2014)

xxiii

About the Technical Reviewers

Carsten Thomsen is a back-end developer primarily but

works with smaller front-end bits as well. He has authored and

reviewed several books and has created numerous Microsoft

Learning courses on software development. Carsten works

as a freelancer/contractor in various countries in Europe;

Azure, Visual Studio, Azure DevOps, and GitHub are some of

his favorite tools. An exceptional troubleshooter, he asks the

right questions, including the less logical ones, in the most

logical to least logical fashion. He also enjoys working with

architecture, research, analysis, development, testing, and bug

fixing. Carsten is a communicator with skills in mentoring,

team leadership, research, and presenting new material.

Shekhar Kumar Maravi is a lead engineer in design and

development whose main interests are programming

languages, algorithms, and data structures. He obtained

his master’s degree in computer science and engineering

from the Indian Institute of Technology, Bombay. After

graduation, he joined Hewlett- Packard’s R&D Hub in India

to work on printer firmware. Currently, he is a technical

lead engineer at Siemens Healthcare’s R&D division. He can

be reached by email at shekhar.maravi@gmail.com or via

LinkedIn at www.linkedin.com/in/shekharmaravi.

http://www.linkedin.com/in/shekharmaravi

xxv

Foreword

Written programs need to be flexible, easily maintainable, and reusable. How do

we know that a program is as elegant as it can be? The answer is that a successful

programmer must use two primary tools: a good programming language (here it is C#)

and design patterns.

When working on a problem, it is unusual to tackle it by inventing a new solution

that is completely dissimilar from the existing ones. One often recalls a similar

problem and reuses the essence of its solution to solve the new problem. This kind of

thinking in problem-solving is common to many different domains, such as software

engineering.

Design patterns are important building blocks for designing and modeling

applications on all platforms. Design patterns help us understand, discuss, and reuse

applications on a specific platform. The most common reasons for studying patterns

are the reuse of solutions and the establishment of common terminology. By reusing

established designs, a developer gets a headstart on the problem and avoids common

mistakes. The benefit of learning from the experience of others’ results is that the

developer does not have to reinvent solutions for recurring problems. The other reason

for using patterns is that common terminology brings a common base of vocabulary and

viewpoint of the problem for developers. It provides a common point of reference during

the analysis and design phase of a project.

Vaskaran Sarcar, who has worked with me for several years now, has been a Most

Valuable Professional over the years in C#. He is enthusiastic, knowledgeable, talented,

curious, analytical, and a teacher of others. He gets to the root of any problem he is trying

to resolve in a well-defined and organized way. He is very committed and works hard

until he gets to the solution. He gets involved and is deeply focused while working on

any problem.

xxvi

And that is also why I am excited about this book. The book brings the frequently

complex world of design patterns into sharp focus with the approach used: the

definition, the core concept, a real-life example, a computer-world example, and a

sample program with output. In this edition, Vaskaran has provided asynchronous

programming patterns usage using C#.

I look forward to seeing where developers can go with this easy approach and

language, and the useful patterns they can build into the infrastructure of other

languages.

—Priya Shimanthoor

Test Architect

Managed Print Services Team

Bangalore, India

June 3, 2020

foreword

xxvii

Acknowledgments

First, I thank the Almighty. I sincerely believe that I could complete this book only with

His blessings. I extend my deepest gratitude and thanks to the following people.

Ratanlal Sarkar and Manikuntala Sarkar: My dear parents, only with your blessings

could I complete this work.

Indrani, my wife; Ambika, my daughter; Aryaman, my son: Sweethearts, once

again, without your love, I could not proceed at all. I know that we need to limit many

social gatherings and invitations to complete my books on time, and each time I promise

you that I’ll take a long break and spend more time with you.

Sambaran, my brother: Thank you for your constant encouragement.

Carsten: I know that whenever I was in need, your support was there. Thank you

once more.

Sekhar: I know this time you helped only in the incremented version of the book, but

thank you once more.

Ankit, my technical advisor in the first edition of this book: I always acknowledge

your contribution and help. I know that your valuable comments were some of the key

foundations for this enhanced edition.

Priya, my ex-colleague cum senior: A special thanks to you for investing your time to

write the forewords for both editions of this book. When experts like you agree to write

for me, I get the additional motivation to enhance the quality of my work.

Celestin, Laura, Smriti: Thanks for giving me another opportunity to work with you

and Apress.

Shrikant: Thank you for your exceptional support to beautify my work.

The production team—Krishnan Sathyamurthy, Sherly, Ramraj, Selvakumar,
and MathaRajamohan: Thank you guys; your efforts are extraordinary.

Lastly, I extend my deepest gratitude to my publisher, the editorial board members,

and everyone who directly or indirectly supports this book.

xxix

Preface

Welcome to your journey through Design Patterns in C# Second Edition.

This book is an introductory guide to the design patterns that you want to use in C#.

You probably know that the concept of design patterns became extremely popular with

the Gang of Four’s famous book Design Patterns: Elements of Reusable Object- Oriented

Software (Addison-Wesley, 1994). That book was primarily focused on C++, but these

concepts still apply in today’s programming world.

C# had its first major release (C# 2.0) in 2005. Since then, it has become rich with

new features and is now a popular programming language. In 2015, I wrote the book

Design Patterns in C#: Computer Science Interview Series. In 2018, Design Patterns in

C#: A Hands-on Guide with Real-World Examples was born. In these books, my core

intention was to implement each of the 23 Gang of Four (GoF) design patterns with C#

implementations. I wanted to present each pattern with simple examples. One thing was

always on my mind when writing: I wanted to use the most basic constructs of C# so that

the code would be compatible with both the upcoming version and the legacy version of

C#. I have found this method helpful in the world of programming.

In the last few years, I got a lot of constructive feedback from my readers. This

fully revised and updated version was created with that feedback in mind. I took the

opportunity to update the formatting and correct some typos from the previous version

of the book and add new content to this new edition. In this book, I focus on another

important area; I call it the “doubt-clearing sessions.” I knew that if I could add more

information, such as alternative ways to write the implementations, the pros and cons of

the patterns, when to choose one approach over another, and so on, readers would find

this book even more helpful.

In this updated version of the original, the “Q&A Session” sections in each chapter

are further enhanced. These sessions can help you learn about each pattern in more

depth. In addition, you see more code explanations for all the programs, and in many

cases, the programs are further simplified, and new programs are added for the patterns.

To learn about the most important enhancements in this edition, refer to Appendix D at

the end of this book.

xxx

 How Is the Book Organized?
This book has three major parts.

Part I consists of the first 23 chapters, which discusses and implements all the GoF

design patterns.

In the world of programming, there is no shortage of patterns, and each has its own

significance. Part II discusses some additional design patterns (Simple Factory, Null

Object, and MVC) that are equally important in today’s world of programming. In this

second edition, I dropped discussions of memory leaks, but I include several patterns from

asynchronous programming. In modern applications, these patterns are very common.

Part III discusses the criticism of design patterns and overviews antipatterns, which

are important when you implement the concepts of design patterns in your applications.

Each chapter is divided into six major parts: a definition (which is basically the intent

in the GoF book), a core concept, a real-world example, a computer/coding–world

example, a sample program with various output, and the “Q&A Session” section. These

sections help you learn about each pattern in more depth.

Please remember that you have just started this journey. As you learn the concepts,

try to write your own code; only then will you master an area.

You will be able to download all the book’s source code from the Apress

website. I plan to maintain the errata, and if necessary, I will also make updates and

announcements there.

 Prerequisite Knowledge
This book’s target readers are those who are familiar with C# basic language constructs

and pure object-oriented concepts, like polymorphism, inheritance, abstraction,

encapsulation, and most importantly, how to compile or run a C# application in Visual

Studio. This book does not invest time in easily available topics, such as how to install

Visual Studio on your system, or how to write a “Hello World” program in C#, or how can

you use an if-else statement or a while loop, and so forth. This book was written using

the most basic features of C#, so for most of the programs in this book, you do not need

to be familiar with C# advanced topics. The examples are simple and straightforward.

I believe that the examples are written in such a way that even if you are familiar with

another popular language, such as Java or C++, you can still easily grasp the concepts in

this book.

PrefaCe

xxxi

 Who Is This Book For?
In short, you want this book if your answer is “yes” to all of the following questions.

• Are you familiar with basic constructs in C# and object-oriented

concepts like polymorphism, inheritance, abstraction, and

encapsulation?

• Do you know how to set up your coding environment?

• Do you want to explore the design patterns in C# step by step?

• Do you want to explore GoF design patterns?

• Are you interested in learning about Simple Factory, Null Object,

MVC, and asynchronous programming patterns?

• Do you want to know how the core constructs of C# work behind

these patterns?

You probably don’t want this book if the answer is “yes” to any of the following

questions.

• Are you new to C#?

• Are you looking for advanced concepts in C#, excluding the topics

mentioned previously?

• Are you interested in exploring a book where the focus is on GoF

patterns (and the patterns listed in the previous section)?

• Do you dislike a book that uses Q&A sessions?

• “I do not like Windows, Visual Studio, and .NET Core. I want to learn

and use C# without them.” Is this statement true for you?

 Guidelines for Using This Book
Here are some suggestions to help you use this book more effectively.

• I assume that you have some knowledge of GoF design patterns.

If you are new to design patterns, I suggest you quickly go through

Appendix A, which helps you become familiar with the basic

concepts of design patterns.

PrefaCe

xxxii

• If you are confident with what Appendix A covers, you can start

with any part of the book. But I suggest you go through the chapters

sequentially. The reason is that some fundamental design techniques

may have been discussed in the Q&A Session of a previous chapter,

and I do not repeat those techniques in later chapters.

• There is only one exception to the previous suggestion. There are

three factory patterns: Simple Factory, Factory Method, and Abstract

Factory. These three patterns are closely related, but the Simple

Factory pattern does not directly fall into the GoF design catalog, so

it appears in Part II of the book. Therefore, of the three patterns, I

suggest that you begin with the Simple Factory.

• Except for a few programs in Chapter 27, all programs were executed

and tested in .NET Core 3.1. The remaining programs were executed

in .NET Framework 4.7.2 because .NET Core doesn’t support certain

functionalities. The specific reasons are discussed in Chapter 27.

• I used Visual Studio Community edition 2019 (version 16.3.9) in

a Windows 10 environment. This Community edition is free. If

you do not use the Windows operating system, you can use Visual

Studio Code, which is a source code editor developed by Microsoft

to support Windows, Linux, or macOS operating systems. This

multiplatform IDE is free. When I started writing this book, I used

the latest versions of C# available. In this context, it is useful to

know that the C# language version is automatically selected based

on your project’s target framework(s) so that you always have the

highest compatible version by default. In the most recent versions,

Visual Studio doesn’t support the UI to change the value, but you

can change it by editing the .csproj file. The Visual Studio 2019

compiler and the .NET Core 3.0 SDK follow this rule. Therefore, you

can simply say that when your target framework is .NET Core 3.x (or

newer), you’ll get C# 8.0(and higher) by default. If you are interested

in C# language versioning, go to https://docs.microsoft.com/

en-us/dotnet/csharp/language-reference/configure-language-

version.

PrefaCe

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version

xxxiii

• Version updates are continuous, but I strongly believe that

the versions should not matter much to you because I use the

fundamental constructs of C# in this book. The code should

execute smoothly in the upcoming versions of C#/Visual Studio

as well. Although I believe that the results should not vary in other

environments, you know the nature of a software-it can be naughty.

So, I recommend that if you want to see the same output, it is best to

mimic the same environment.

• You can download and install Visual Studio IDE from https://

visualstudio.microsoft.com/downloads/. You should see what’s

shown in Figure P-1.

Note at the time of this writing, this link works fine, and the information is
correct. but the link and policies may change in the future.

Figure P-1. Download link for Visual Studio 2019 and Visual Studio Code

PrefaCe

https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/

xxxiv

• I installed the class designer component in Visual Studio 2019 to

draw class diagrams for my programs. I needed to edit some of these

diagrams for better readability (for example, to show composition,

aggregation, etc.). I added some valuable notes to these diagrams so

that you can better understand them. These additional efforts were

required because UML designers are removed in Visual Studio 2017.

For more information, visit https://blogs.msdn.microsoft.com/

devops/2016/10/14/uml-designers-have-been-removed-layer-

designer-now-supports-live-architectural-analysis/.

• In the first edition of this book, I drew a few directed graph

documents (DAGs) using an older version of Visual Studio (Ultimate

2013). To make the book more concise, the DAGs were dropped

for the second edition. Now there are modified class diagrams

and additional code explanations, which are sufficient for you to

understand the code.

 Conventions Used in This Book
First, in many places, I use the word his. Please treat it as his or her, whichever applies to you.

Second, the output and code in this book follow the same font and structure. To draw

your attention, I use bold in some places. For example, consider the following output

fragment (from Chapter 21) and the lines in bold.

...

[Joseph] posts: How are you? Last message posted 15-05-2020 11:30:52

Amit has received a message from Joseph saying: How are you?

An outsider named Todd of [MediatorPatternModifiedDemo.Friend] is trying to

send a message to Joseph.

Amit, at this moment, you cannot send a message to Todd because he is

either not a registered user, or he is currently offline.

An outsider named Jack of [MediatorPatternModifiedDemo.Stranger] is trying

to send a message to Joseph.

Sohel is going offline now.

...

PrefaCe

https://blogs.msdn.microsoft.com/devops/2016/10/14/uml-designers-have-been-removed-layer-designer-now-supports-live-architectural-analysis/
https://blogs.msdn.microsoft.com/devops/2016/10/14/uml-designers-have-been-removed-layer-designer-now-supports-live-architectural-analysis/
https://blogs.msdn.microsoft.com/devops/2016/10/14/uml-designers-have-been-removed-layer-designer-now-supports-live-architectural-analysis/

xxxv

 Final Words
You are showing interest in a subject that can assist you throughout your career. If

you are a developer/programmer, you need these concepts. If you are an architect at

a software company, you need these concepts. If you are a college student, you need

these concepts, not only to score well on exams, but to enter the corporate world. Even

if you are a tester who needs to take care of white-box testing, or needs to know the code

paths of a product, knowing these concepts will help you. So, I suggest that you should

not demotivate yourself, if in the first attempt, you do not understand everything in a

particular chapter. It’s perfectly natural. Based on your C# knowledge, you may find one

pattern easier than other. In that case, move on to the next chapter, learn from it, gain

confidence, and come back to the old chapter.

This book is designed to help you develop an adequate knowledge of design patterns

in C#, and more importantly, help you learn how to go further. I hope that this book will

help you and you will value the effort.

PrefaCe

PART I

Gang of Four
Design Patterns

PART I.A

Creational Patterns

5
© Vaskaran Sarcar 2020
V. Sarcar, Design Patterns in C#, https://doi.org/10.1007/978-1-4842-6062-3_1

CHAPTER 1

Singleton Pattern
This chapter covers the Singleton pattern.

 GoF Definition
Ensure a class has only one instance, and provide a global point of access to it.

 Concept
Let’s assume that you have a class called A, and you need to create an object from it.

Normally, what would you do? You could simply use this line of code: A obA=new A();

But let’s take a closer look. If you use the new keyword ten more times, you’ll have

ten more objects, right? But in a real-world scenario, unnecessary object creation is a big

concern (particularly when constructor calls are truly expensive), so you need to restrict

it. In a situation like this, the Singleton pattern comes in handy. It restricts the use of new

and ensures that you do not have more than one instance of the class.

In short, this pattern says that a class should have only one instance. You can create

an instance if it is not available; otherwise, you should use an existing instance to serve

your needs. By following this approach, you can avoid creating unnecessary objects.

 Real-World Example
Let’s assume that you have a sports team that is participating in a tournament. Your team

needs to play against multiple opponents throughout the tournament. At the beginning

of each of the matches, as per the rules of the game, the two team captains must toss a

coin. If your team does not have a captain, you need to elect someone to be the captain

https://doi.org/10.1007/978-1-4842-6062-3_1#DOI

6

for the duration of the tournament. Prior to each match and each coin toss, you may not

repeat the process of electing a captain if you have already done so.

 Computer-World Example
In some software systems, you may decide to maintain only one file system so that

you can use it for the centralized management of resources. This approach helps you

implement a caching mechanism effectively. Consider another example. You can also

use this pattern to maintain a thread pool in a multithreading environment.

 Implementation
A Singleton pattern can be implemented in many ways. Each approach has its own pros

and cons. In the following demonstration, I show you a simple approach. Here the class

is named Singleton, and it has the following characteristics. Before you proceed, you

must go through them.

• I used a private parameterless constructor in this example. So, you

cannot instantiate the type in a normal fashion (using new).

• This class is sealed. (For our upcoming demonstration, it is not

required, but it can be beneficial if you make specific modifications to

this Singleton class. This is discussed in the Q&A session).

• Since new is blocked, how do you get an instance? In a case like this,

you can opt for a utility method or a property. In this example, I chose

a property, and in my Singleton class, you see the following code:

public static Singleton GetInstance

{

 get

 {

 return Instance;

 }

 }

Chapter 1 Singleton pattern

7

• If you like to use an expression-bodied, read-only property (which

came in C# v6), you can replace the code segment with the following

line of code:

public static Singleton GetInstance => Instance;

• I used a static constructor inside the Singleton class. A static

constructor must be parameterless. Per Microsoft, in C#, it initializes

static data and performs a specific action only once. In addition, a

static constructor is called automatically before you create the first

instance, or you refer to any static class member. You can safely

assume that I’ve taken full advantage of these specifications.

• Inside the Main() method, I use a simple check to ensure that I’m

using the same and only available instance.

• You see the following line of code in the Singleton class:

private static readonly Singleton Instance;

The public static member ensures a global point of access. It

confirms that the instantiation process will not start until you

invoke the Instance property of the class (in other words, it

supports lazy instantiation), and readonly ensures that the

assignment process takes place in the static constructor only. A

readonly field can’t be assigned once you exit the constructor. By

mistake, if you repeatedly try to assign this static readonly field,

you’ll encounter the CS0198 compile-time error, which says that

a static readonly field cannot be assigned (except in a

static constructor or a variable initializer).

• The Singleton class is also marked with the sealed keyword to prevent

the further derivation of the class (so that its subclass cannot misuse it).

Note i’ve kept the important comments to help you better understand. i’ll do the
same for most of the programs in this book; for example, when you download the
code from the apress website, you can see the usage of an expression-bodied,
read-only property in the commented lines.

Chapter 1 Singleton pattern

8

 Class Diagram
Figure 1-1 is a class diagram for the illustration of the Singleton pattern.

 Solution Explorer View
Figure 1-2 shows the high-level structure of the program.

Figure 1-1. Class diagram

Figure 1-2. Solution Explorer view

Chapter 1 Singleton pattern

9

 Demonstration 1
Go through the following implementation, and use the supportive comments to help you

better understand.

using System;

namespace SingletonPatternUsingStaticConstructor

{

 public sealed class Singleton

 {

 #region Singleton implementation using static constructor

 private static readonly Singleton Instance;

 private static int TotalInstances;

 /*

 * Private constructor is used to prevent

 * creation of instances with the 'new' keyword

 * outside this class.

 */

 private Singleton()

 {

 Console.WriteLine("--Private constructor is called.");

 Console.WriteLine("--Exit now from private constructor.");

 }

 /*

 * A static constructor is used for the following purposes:

 * 1. To initialize any static data

 * 2. To perform a specific action only once

 *

 * The static constructor will be called automatically before:

 * i. You create the first instance; or

 * ii.You refer to any static members in your code.

 *

 */

Chapter 1 Singleton pattern

10

 // Here is the static constructor

 static Singleton()

 {

 // Printing some messages before you create the instance

 Console.WriteLine("-Static constructor is called.");

 Instance = new Singleton();

 TotalInstances++;

 Console.WriteLine($"-Singleton instance is created.Number of

instances:{ TotalInstances}");

 Console.WriteLine("-Exit from static constructor.");

 }

 public static Singleton GetInstance

 {

 get

 {

 return Instance;

 }

 }

 /*

 * If you like to use expression-bodied read-only

 * property, you can use the following line (C# v6.0 onwards).

 */

 // public static Singleton GetInstance => Instance;

 #endregion

 /* The following line is used to discuss

 the drawback of the approach. */

 public static int MyInt = 25;

 }

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Singleton Pattern Demonstration.***\n");

 /* The following line is used to discuss

 the drawback of the approach. */

Chapter 1 Singleton pattern

11

 //Console.WriteLine($"The value of MyInt is :{Singleton.MyInt}");

 // Private Constructor.So, you cannot use the 'new' keyword.

 //Singleton s = new Singleton(); // error

 Console.WriteLine("Trying to get a Singleton instance, called

firstInstance.");

 Singleton firstInstance = Singleton.GetInstance;

 Console.WriteLine("Trying to get another Singleton instance,

called secondInstance.");

 Singleton secondInstance = Singleton.GetInstance;

 if (firstInstance.Equals(secondInstance))

 {

 Console.WriteLine("The firstInstance and secondInstance are

the same.");

 }

 else

 {

 Console.WriteLine("Different instances exist.");

 }

 Console.Read();

 }

 }

}

 Output
Here is the output for this example.

Singleton Pattern Demonstration.

Trying to get a Singleton instance, called firstInstance.

-Static constructor is called.

--Private constructor is called.

--Exit now from private constructor.

-Singleton instance is created.Number of instances:1

-Exit from static constructor.

Trying to get another Singleton instance, called secondInstance.

The firstInstance and secondInstance are the same.

Chapter 1 Singleton pattern

12

Note Microsoft recommends pascal naming conventions for static fields. i
followed this in the previous demonstration.

 Analysis
In this section, I discuss two important points regarding the previous demonstration.

First, I show you how to shorten your code size, and then I discuss a potential drawback

in the approach that I just followed. Let’s start.

From the associated comments, you see that if you like to use expression-bodied,

read-only properties, you can replace the following code segment

public static Singleton GetInstance

 {

 get

 {

 return Instance;

 }

 }

with the following line of code.

public static Singleton GetInstance => Instance;

Keeping the existing code, add the following code segment inside the Singleton

class.

 /* The following line is used to discuss

 the drawback of the approach.*/

 public static int MyInt = 25;

After this addition, the Singleton class is as follows.

public sealed class Singleton

 {

 #region Singleton implementation using static constructor

 // Keeping all existing code shown in the previous demonstration

Chapter 1 Singleton pattern

13

 #endregion

 /* The following line is used to discuss

 the drawback of the approach.*/

 public static int MyInt = 25;

 }

Now suppose that you use the following Main() method.

static void Main(string[] args)

 {

 Console.WriteLine("***Singleton Pattern Demonstration.***\n");

 Console.WriteLine($"The value of MyInt is :{Singleton.MyInt}");

 Console.Read();

 }

If you execute the program now, you see the following output.

Singleton Pattern Demonstration.

-Static constructor is called.

--Private constructor is called.

--Exit now from private constructor.

-Singleton instance is created.Number of instances:1

-Exit from static constructor.

The value of MyInt is :25

Although you were supposed to see only the last line of the output, you are getting

all the instantiation details of the Singleton class, which illustrates the downside of

this approach. Specifically, inside the Main() method, you tried to use the MyInt static

variable, but your application still created an instance of the Singleton class. So, when

you use this approach, you have less control over the instantiation process.

Apart from this issue, however, there is no significant drawback associated with

it. You simply acknowledge that it is a one-time activity, and the initialization process

will not be repeated. If you can tolerate this drawback, you can claim that you have

implemented a simple, nice Singleton pattern. Here I’m repeating that each approach

has its own pros and cons; no approach is 100% perfect. Based on your requirements,

you may prefer one over the others.

Chapter 1 Singleton pattern

14

Next, I present another common variant of this implementation. I could directly use

the following line

private static readonly Singleton Instance = new Singleton();

and avoid printing the special messages in the console using a static constructor. The

following code segment also demonstrates a Singleton pattern.

public sealed class Singleton

 {

 #region Using static initialization

 private static readonly Singleton Instance = new Singleton();

 private static int TotalInstances;

 /*

 * Private constructor is used to prevent

 * creation of instances with 'new' keyword

 * outside this class.

 */

 private Singleton()

 {

 Console.WriteLine("--Private constructor is called.");

 Console.WriteLine("--Exit now from private constructor.");

 }

 public static Singleton GetInstance

 {

 get

 {

 return Instance;

 }

 }

 #endregion

 }

This kind of coding is often called static initialization. I wanted to print custom

messages in the console, so my preferred approach is shown in demonstration 1.

Chapter 1 Singleton pattern

15

 Q&A Session
1.1 Why are you complicating things? You could simply write your Singleton

class as follows.

public class Singleton

 {

 private static Singleton instance;

 private Singleton() { }

 public static Singleton Instance

 {

 get

 {

 if (instance == null)

 {

 instance = new Singleton();

 }

 return instance;

 }

 }

 }

Yes, this approach can work in a single-threaded environment, but consider a

multithreaded environment where two (or more) threads may try to evaluate the

following code at the same time.

if (instance == null)

If the instance has not been created yet, each thread will try to create a new instance.

As a result, you may end up with multiple instances of the class.

1.2 Can you show an alternative approach for modeling the Singleton design
pattern?

There are many approaches. Each of them has pros and cons.

Chapter 1 Singleton pattern

16

The following code shows double-checked locking. The following code segment

outlines this approach.

 // Singleton implementation using double checked locking.

 public sealed class Singleton

 {

 /*

 * We are using volatile to ensure

 * that assignment to the instance variable finishes

 * before it's accessed.

 */

 private static volatile Singleton Instance;

 private static object lockObject = new Object();

 private Singleton() { }

 public static Singleton GetInstance

 {

 get

 {

 // First Check

 if (Instance == null)

 {

 lock (lockObject)

 {

 // Second(Double) Check

 if (Instance == null)

 Instance = new Singleton();

 }

 }

 return Instance;

 }

 }

 }

Chapter 1 Singleton pattern

17

This approach can help you create instances when they are needed. But you must

remember that, in general, the locking mechanism is expensive.

Instead of using double locks, you can also use a single lock, as follows.

//Singleton implementation using single lock

 public sealed class Singleton

 {

 /*

 * We are using volatile to ensure

 * that assignment to the instance variable finishes

 * before it's access.

 */

 private static volatile Singleton Instance;

 private static object lockObject = new Object();

 private Singleton() { }

 public static Singleton GetInstance

 {

 get

 {

 // Locking it first

 lock (lockObject)

 {

 // Single check

 if (Instance == null)

 {

 Instance = new Singleton();

 }

 }

 return Instance;

 }

 }

 }

Chapter 1 Singleton pattern

18

Although this approach may look simpler, it is not considered a better approach

because you’re acquiring the lock each time an instance of the Singleton instance is

requested, which degrades the performance of your application.

At the end of this chapter, you see another approach to implement a Singleton

pattern using built-in constructs in C#.

Note When you keep the client code the same, you can simply replace the
Singleton class using your preferred approach. i provide full demonstrations on
this, which you can download from apress’s website.

1.3 Why are you marking the instance as volatile in the double-checked locking

example?
Many developers believe that it is unnecessary for .NET 2.0 and above, but there

is debate. To make it simple, let’s look at what the C# specifications state: “The volatile

keyword indicates that a field might be modified by multiple threads that are executing

at the same time. The compiler, the runtime system, and even the hardware may

rearrange reads and writes to a memory location for performance reasons. Fields that

are declared volatile are not subject to these optimizations. Adding the volatile modifier

ensures that all threads will observe volatile writes performed by any other thread in

the order in which they were performed.” This simply means that the volatile keyword

helps provide a serialize access mechanism, so all threads observe the changes by any

other thread as per their execution order. It ensures that the most current value is always

present in the field. Thus, using the volatile modifier makes your code safer.

In this context, you should remember that the volatile keyword cannot be applied

to all types, and there are certain restrictions. For example, you can apply it to class or

struct fields, but not to local variables.

1.4 Why are multiple object creations a big concern?
Here are two important points to remember.

• Object creations can be costly if you are working with resource-

intensive objects.

• In some applications, you may need to pass a common object to

multiple places.

Chapter 1 Singleton pattern

19

1.5 When should I use the Singleton pattern?
It depends. Here are some common use cases in which this pattern is useful.

• When working with a centralized system (for example a database)

• When maintaining a common log file

• When maintaining a thread pool in a multithreaded environment

• When implementing a caching mechanism or device drivers, and so forth

1.6 Why are you using the sealed keyword? The Singleton class has a private
constructor that is sufficient for stopping the derivation process.

Good catch. It is not mandatory, but it is always best to clearly show your intentions.

I use it to guard one special case: when you are tempted to use a derived nested class,

and you prefer to initialize inside the private constructor itself. To better understand this,

let’s assume that you have the following class, which is not sealed. In this class, you do

not use a static constructor; instead, you use a private constructor to track the number of

instances. I formatted the key changes in bold.

public class Singleton

{

private static readonly Singleton Instance = new Singleton();

private static int TotalInstances;

/*

 * Private constructor is used to prevent

 * creation of instances with 'new' keyword

 * outside this class.

 */

private Singleton()

{

 Console.WriteLine("--Private constructor is called.");

 TotalInstances++;

 Console.WriteLine($"-Singleton instance is created. Number of

instances:{ TotalInstances}");

 Console.WriteLine("--Exit now from private constructor.");

}

Chapter 1 Singleton pattern

20

public static Singleton GetInstance

{

 get

 {

 return Instance;

 }

}

// The keyword "sealed" can guard this scenario.

// public class NestedDerived : Singleton { }

}

Inside the Main() method, let’s make a small change to the first line of the console

messages to differentiate the output from the original one, but let’s keep the remaining

part as it is. It now looks as follows.

class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Singleton Pattern Q&A***\n");

 Console.WriteLine("Trying to get a Singleton instance, called

firstInstance.");

 Singleton firstInstance = Singleton.GetInstance;

 Console.WriteLine("Trying to get another Singleton instance,

called secondInstance.");

 Singleton secondInstance = Singleton.GetInstance;

 if (firstInstance.Equals(secondInstance))

 {

 Console.WriteLine("The firstInstance and secondInstance are

same.");

 }

 else

 {

 Console.WriteLine("Different instances exist.");

 }

Chapter 1 Singleton pattern

21

 //Singleton.NestedDerived nestedClassObject1 = new Singleton.

NestedDerived();

 //Singleton.NestedDerived nestedClassObject2 = new Singleton.

NestedDerived();

 Console.Read();

 }

}

If you run the program, you’ll get the following output.

Singleton Pattern Q&A

Trying to get a Singleton instance, called firstInstance.

--Private constructor is called.

-Singleton instance is created. Number of instances:1

--Exit now from private constructor.

Trying to get another Singleton instance, called secondInstance.

The firstInstance and secondInstance are same.

This is straightforward and similar to the output from our original demonstration.

Now uncomment the following line in the Singleton class.

//public class NestedDerived : Singleton { }

Then uncomment the following two lines of code inside the Main() method.

//Singleton.NestedDerived nestedClassObject1 = new Singleton.NestedDerived();

//Singleton.NestedDerived nestedClassObject2 = new Singleton.NestedDerived();

Run the application again. This time, you get the following output.

Singleton Pattern Q&A

Trying to get a Singleton instance, called firstInstance.

--Private constructor is called.

-Singleton instance is created.Number of instances:1

--Exit now from private constructor.

Trying to get another Singleton instance, called secondInstance.

The firstInstance and secondInstance are same.

Chapter 1 Singleton pattern

22

--Private constructor is called.

-Singleton instance is created.Number of instances:2

--Exit now from private constructor.

--Private constructor is called.

-Singleton instance is created.Number of instances:3

--Exit now from private constructor.

Have you noticed that the total number of instances is increasing? Although in my

original demonstration, I could exclude the use of sealed, I kept it to guard this type of

situation, which may arise due to modifying the original implementation of the Singleton

class.

 Alternative Implementation
Now I’ll show you another approach that uses built-in constructs in C#. In the previous

edition of the book, I skipped this because to understand this code, you need to be

familiar with generics, delegates, and lambda expressions. If you are not familiar with

delegates, you can skip this section for now; otherwise, let’s proceed.

In this example, I’m showing you three different ways to use the code effectively

(using a custom delegate, using a built-in Func delegate, and finally, using a lambda

expression). Let’s look at the core code segment for the Singleton class with the

associated comments, and then follow with the analysis.

 // Singleton implementation using Lazy<T>

 public sealed class Singleton

 {

 // Custom delegate

 delegate Singleton SingletonDelegateWithNoParameter();

 static SingletonDelegateWithNoParameter myDel = MakeSingletonInstance;

 // Using built-in Func<out TResult> delegate

 static Func<Singleton> myFuncDelegate= MakeSingletonInstance;

 private static readonly Lazy<Singleton> Instance = new

Lazy<Singleton>(

 //myDel() // Also ok. Using a custom delegate

 myFuncDelegate()

Chapter 1 Singleton pattern

23

 //() => new Singleton() // Using lambda expression

);

 private static Singleton MakeSingletonInstance()

 {

 return new Singleton();

 }

 private Singleton() { }

 public static Singleton GetInstance

 {

 get

 {

 return Instance.Value;

 }

 }

 }

 Analysis
The most important part of this code is

private static readonly Lazy<Singleton> Instance = new Lazy<Singleton>(

 //myDel() // Also ok. Using a custom delegate

 myFuncDelegate()

 //() => new Singleton() // Using lambda expression

);

Here myDel() is commented out; it can be used when you use the custom delegate.

myFuncDelegate() is already executed where the built-in Func delegate is used. The

final commented line can be used if you want to use a lambda expression instead of the

delegates. In short, when you experiment with any of these approaches, the other two

lines should be commented out.

If you hover your mouse on Lazy<Singleton>, you see that Lazy<T> supports lazy

initialization; at the time of this writing, it has seven overloaded versions of constructor,

and some of them can accept a Func delegate instance as a method parameter. Now

you know why I used the Func delegate in this example. Figure 1-3 is a Visual Studio

screenshot.

Chapter 1 Singleton pattern

24

In this example, I used the following version.

public Lazy(Func<T> valueFactory);

Although the Func delegate has many overloaded versions, in this case, you can only

use the following version.

public delegate TResult Func<[NullableAttribute(2)] out TResult>();

This Func version can point a method that accepts no parameter but returns a value

of the type specified by the TResult parameter, which is why it can correctly point to the

following method.

Figure 1-3. Visual Studio screenshot for Lazy<T> class

Chapter 1 Singleton pattern

25

private static Singleton MakeSingletonInstance()

 {

 return new Singleton();

 }

If you want to use your own delegate, you can do so. The following code segment can

be used for that purpose.

// Custom delegate

delegate Singleton SingletonDelegateWithNoParameter();

static SingletonDelegateWithNoParameter myDel = MakeSingletonInstance;

In such a case, you need to use myDel() instead of myFuncDelegate().

Finally, if you opt for a lambda expression, you do not need the

MakeSingletonInstance() method, and you can directly use the following segment of code.

private static readonly Lazy<Singleton> Instance = new Lazy<Singleton>(

 () => new Singleton() // Using lambda expression

);

Note in all the approaches to implementing a Singleton pattern, the Main()
method is essentially the same. So, for brevity, i did not include this in the
discussions.

 Q&A Session
1.7 You used the term lazy initialization. What does it mean?
It’s a technique that you use to delay the object creation process. The basic idea is

that you should create the object only when it is truly required. This method is useful

when object creation is a costly operation.

Hopefully, you have a better idea of the Singleton design pattern. Performance vs.

laziness is always a concern in this pattern, and some developers always question those

areas. But the truth is that this pattern is found in many applications in various forms.

Chapter 1 Singleton pattern

26

Let’s finish the chapter with an Erich Gamma (a Swiss computer scientist and one of

the GoF authors) quote from an interview in 2009: “When discussing which patterns to

drop, we found that we still love them all. Not really—I'm in favor of dropping Singleton.

Its use is almost always a design smell.” If you are interested to see the details of this

interview,you can follow the link: https://www.informit.com/articles/article.

aspx?p=1404056.

Chapter 1 Singleton pattern

27
© Vaskaran Sarcar 2020
V. Sarcar, Design Patterns in C#, https://doi.org/10.1007/978-1-4842-6062-3_2

CHAPTER 2

Prototype Pattern
This chapter covers the Prototype pattern.

 GoF Definition
Specify the kinds of objects to create using a prototypical instance, and create new

objects by copying this prototype.

 Concept
The Prototype pattern provides an alternative method for instantiating new objects

by copying or cloning an instance of an existing object. You can avoid the expense of

creating a new instance using this concept. If you look at the intent of the pattern (the

GoF definition), you see that the core idea of this pattern is to create an object that is

based on another object. This existing object acts as a template for the new object.

When you write code for this pattern, in general, you see there is an abstract class or

interface that plays the role of an abstract prototype. This abstract prototype contains a

cloning method that is implemented by concrete prototypes. A client can create a new

object by asking a prototype to clone itself. In the upcoming program (demonstration 1)

of this chapter, I follow the same approach.

 Real-World Example
Suppose that you have a master copy of a valuable document. You need to incorporate

some changes to it to analyze the effect of the changes. In this case, you can make a

photocopy of the original document and edit the changes in the photocopied document.

https://doi.org/10.1007/978-1-4842-6062-3_2#DOI

28

 Computer-World Example
Let’s assume that you already have a stable application. In the future, you may want to

modify the application with some small changes. You must start with a copy of your

original application, make the changes, and then analyze it further. You do not want to

start from scratch merely to make a change; this would cost you time and money.

In .NET, the ICloneable interface contains a Clone() method. In Visual Studio IDE,

you can easily find the following details.

namespace System

{

 //

 // Summary:

 // Supports cloning, which creates a new instance of a class with

 // the same value as an existing instance.

 [NullableContextAttribute(1)]

 public interface ICloneable

 {

 //

 // Summary:

 // Creates a new object that is a copy of the current instance.

 //

 // Returns:

 // A new object that is a copy of this instance.

 object Clone();

 }

}

You can use this built-in construct when you implement the Prototype pattern, but in

this example, I used my own Clone() method.

Chapter 2 prototype pattern

29

 Implementation
In this example, I follow the structure shown in Figure 2-1.

Here BasicCar is the prototype. It is an abstract class that has an abstract method

called Clone(). Nano and Ford are the concrete classes (i.e., concrete prototypes), which

inherit from BasicCar. Both concrete classes have implemented the Clone() method. In

this example, initially, I created a BasicCar object with a default price. Later, I modified

that price per model. Program.cs is the client in the implementation.

Inside the BasicCar class, there is a method named SetAdditionalPrice(). It

generates a random value between 200,000(inclusive) and 500,000(exclusive). This

value is added to the base price before I calculate the final onRoad price of a car. In this

example, I mention the price of these cars in Indian currency (Rupee).

A car model’s base price is set through the constructor of the concrete prototypes.

So, you see the code segments like the following, where the concrete prototype (Nano)

initializes the base price. Again, this class also overrides the Clone() method in BasicCar.

public class Nano : BasicCar

 {

 public Nano(string m)

 {

 ModelName = m;

Figure 2-1. Prototype example

Chapter 2 prototype pattern

30

 // Setting a basic price for Nano.

 basePrice = 100000;

 }

 public override BasicCar Clone()

 {

 // Creating a shallow copy and returning it.

 return this.MemberwiseClone() as Nano;

 }

 }

Ford, another concrete prototype, has a similar structure. In this example, I used

two concrete prototypes (Ford and Nano). To better understand the Prototype pattern,

one concrete prototype is enough. So, if you want, you can simply drop either of these

concrete prototypes to reduce the code size.

Lastly and most importantly, you see the MemberwiseClone() method in the

upcoming examples. It is defined in the Object class and has the following description.

// Summary:

// Creates a shallow copy of the current System.Object.

//

// Returns:

// A shallow copy of the current System.Object.

[NullableContextAttribute(1)]

protected Object MemberwiseClone();

Note you may be wondering about the term shallow. actually, there are two types
of cloning: shallow and deep. this chapter includes a discussion and a complete
program to help you understand their differences. For now, you only need to know
that in a shallow copy, the simple type fields of a class are copied to the cloned
instance; but for reference type fields, only the references are copied. So, in this
type of cloning, both the original and cloned instances point to the same reference,
which may cause problems in some cases. to overcome this, you may need to
employ a deep copy.

Chapter 2 prototype pattern

31

 Class Diagram
Figure 2-2 shows the class diagram.

Figure 2-2. Class diagram

Chapter 2 prototype pattern

32

 Solution Explorer View
Figure 2-3 shows the high-level structure of the parts of the program.

Figure 2-3. Solution Explorer view

Chapter 2 prototype pattern

33

 Demonstration 1
Here’s the implementation.

// BasicCar.cs

using System;

namespace PrototypePattern

{

 public abstract class BasicCar

 {

 public int basePrice = 0, onRoadPrice=0;

 public string ModelName { get; set; }

 /*

 We'll add this price before

 the final calculation of onRoadPrice.

 */

 public static int SetAdditionalPrice()

 {

 Random random = new Random();

 int additionalPrice = random.Next(200000, 500000);

 return additionalPrice;

 }

 public abstract BasicCar Clone();

 }

}

// Nano.cs

namespace PrototypePattern

{

 public class Nano : BasicCar

 {

 public Nano(string m)

 {

Chapter 2 prototype pattern

34

 ModelName = m;

 // Setting a base price for Nano.

 basePrice = 100000;

 }

 public override BasicCar Clone()

 {

 // Creating a shallow copy and returning it.

 return this.MemberwiseClone() as Nano;

 }

 }

}

// Ford.cs

namespace PrototypePattern

{

 public class Ford : BasicCar

 {

 public Ford(string m)

 {

 ModelName = m;

 // Setting a basic price for Ford.

 basePrice = 500000;

 }

 public override BasicCar Clone()

 {

 // Creating a shallow copy and returning it.

 return this.MemberwiseClone() as Ford;

 }

 }

}

// Client

Chapter 2 prototype pattern

35

using System;

namespace PrototypePattern

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Prototype Pattern Demo***\n");

 // Base or Original Copy

 BasicCar nano = new Nano("Green Nano");

 BasicCar ford = new Ford("Ford Yellow");

 BasicCar basicCar;

 // Nano

 basicCar = nano.Clone();

 // Working on cloned copy

 basicCar.onRoadPrice = basicCar.basePrice + BasicCar.

SetAdditionalPrice();

 Console.WriteLine($"Car is: {basicCar.ModelName}, and it's

price is Rs. {basicCar.onRoadPrice}");

 // Ford

 basicCar = ford.Clone();

 // Working on cloned copy

 basicCar.onRoadPrice = basicCar.basePrice + BasicCar.

SetAdditionalPrice();

 Console.WriteLine($"Car is: {basicCar.ModelName}, and it's

price is Rs. {basicCar.onRoadPrice}");

 Console.ReadLine();

 }

 }

}

Chapter 2 prototype pattern

36

 Output
The following is a possible output.

Prototype Pattern Demo

Car is: Green Nano, and it's price is Rs. 368104

Car is: Ford Yellow, and it's price is Rs. 878072

Note you may see a different price in your system because I generated a
random price in the SetAdditionalPrice() method inside the BasicCar
class. But I ensured that the price of Ford is greater than Nano.

 Modified Implementation
In demonstration 1, before making a clone, the client instantiated the objects as follows.

BasicCar nano = new Nano("Green Nano");

BasicCar ford = new Ford("Ford Yellow");

This is fine, but in some examples of the Prototype pattern, you may notice an

additional participant creating the prototypes and supplying them to the client. Experts

often like this approach because it hides the complexity of creating new instances from

the client. Let’s look at how to implement this in demonstration 2.

 Class Diagram
Figure 2-4 shows the key changes in the modified class diagram.

Chapter 2 prototype pattern

37

 Demonstration 2
To demonstrate this, I added the following class, called CarFactory, to our previous

demonstration.

class CarFactory

 {

 private readonly BasicCar nano, ford;

 public CarFactory()

 {

 nano = new Nano("Green Nano");

 ford = new Ford("Ford Yellow");

 }

Figure 2-4. Key changes in the class diagram for demonstration 2

Chapter 2 prototype pattern

38

 public BasicCar GetNano()

 {

 return nano.Clone();

 }

 public BasicCar GetFord()

 {

 return ford.Clone();

 }

 }

With this class, your client code can be modified as follows.

class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Prototype Pattern Demo2.***\n");

 CarFactory carFactory = new CarFactory();

 // Get a Nano

 BasicCar basicCar = carFactory.GetNano();

 //Working on cloned copy

 basicCar.onRoadPrice = basicCar.basePrice + BasicCar.

SetAdditionalPrice();

 Console.WriteLine($"Car is: {basicCar.ModelName}, and it's

price is Rs. {basicCar.onRoadPrice}");

 // Get a Ford now

 basicCar = carFactory.GetFord();

 // Working on cloned copy

 basicCar.onRoadPrice = basicCar.basePrice + BasicCar.

SetAdditionalPrice();

 Console.WriteLine($"Car is: {basicCar.ModelName}, and it's

price is Rs. {basicCar.onRoadPrice}");

 Console.ReadLine();

 }

 }

Chapter 2 prototype pattern

39

 Output
The following is a possible output.

Prototype Pattern Demo2.

Car is: Green Nano, and it's price is Rs. 546365

Car is: Ford Yellow, and it's price is Rs. 828518

 Analysis
This output is just like the previous output, and there is no magic. The CarFactory class

serves our needs, but there is a potential drawback to it. I initialized the cars inside the

constructor of CarFactory. As a result, it always creates instances of both car types when

the class is initialized. So, if you want to implement a lazy initialization, you can modify

the GetNano() method in the CarFactory class, as follows.

public BasicCar GetNano()

 {

 if (nano!=null)

 {

 // Nano was created earlier.

 // Returning a clone of it.

 return nano.Clone();

 }

 else

 {

 /*

 Create a nano for the first

 time and return it.

 */

 nano = new Nano("Green Nano");

 return nano;

 }

 }

You can modify the GetFord() method in the same way.

Chapter 2 prototype pattern

40

Note When you implement these changes, do not forget to remove the read-only
modifier to avoid a compile-time error.

Here is the modified class.

class CarFactory

 {

 private BasicCar nano,ford;

 public BasicCar GetNano()

 {

 if (nano!=null)

 {

 // Nano was created earlier.

 // Returning a clone of it.

 return nano.Clone();

 }

 else

 {

 /*

 Create a nano for the first

 time and return it.

 */

 nano = new Nano("Green Nano");

 return nano;

 }

 }

 public BasicCar GetFord()

 {

 if (ford != null)

 {

 // Ford was created earlier.

 // Returning a clone of it.

 return ford.Clone();

 }

 else

Chapter 2 prototype pattern

41

 {

 /*

 Create a nano for the first

 time and return it.

 */

 ford = new Ford("Ford Yellow");

 return ford;

 }

 }

 }

Lastly, this is not the ultimate modification. In Chapter 1, you learned that in a

multithreading environment, additional objects might be produced when you check the

if-conditions. Since you learned possible solutions in Chapter 1, I do not focus on them

in this discussion or upcoming discussions. I believe that you should now have a clear

idea about the intent of this pattern.

 Q&A Session
2.1 What are the advantages of using the prototype design pattern?
Here are some of the important usages.

• You do not want to modify the existing object and experiment

on that.

• You can include or discard products at runtime.

• In some contexts, you can create new instances at a cheaper cost.

• You can focus on the key activities rather than focusing on

complicated instance creation processes. For example, once you

ignore the complex object creation processes, you can simply start

with cloning or copying objects and implementing the remaining

parts.

• You want to get a feel for the new object’s behavior before you fully

implement it.

Chapter 2 prototype pattern

42

2.2 What are the challenges associated with using the Prototype design pattern?
Here are some of the challenges.

• Each subclass needs to implement the cloning or copying

mechanism.

• Implementing the cloning mechanism can be challenging if the

objects under consideration do not support copying or if there are

circular references.

In this example, I used the MemberwiseClone() member method, which provides

a shallow copy. It is a very simple technique and can serve your basic needs. But if you

need to provide a deep copy implementation for a complex object, it can be expensive

because you not only need to copy the object, you also need to take care of all the

references, which may form a very complicated graph.

2.3 Can you elaborate on the difference between a shallow copy and a deep
copy in C#?

The following section explains their differences.

 Shallow Copy vs. Deep Copy
A shallow copy creates a new object and then copies the nonstatic fields from the

original object to the new object. If a value type field exists in the original object, a

bit-by-bit copy is performed. But if the field is a reference type, this method copies the

reference, not the actual object. Let’s try to understand the mechanism with a simple

diagram (see Figure 2-5). Suppose that you have an object, X1, and it has a reference to

another object, Y1. Further, assume that object Y1 has a reference to object Z1.

Figure 2-5. Before the shallow copy of the references

Chapter 2 prototype pattern

43

With a shallow copy of X1, a new object (say, X2) is created that also has a reference

to Y1 (see Figure 2-6).

Figure 2-6. After a shallow copy of the reference

Figure 2-7. After a deep copy of the reference

I used MemberwiseClone() in the implementation. It performs a shallow copy.

For a deep copy of X1, a new object (say, X3) is created, and X3 has a reference to the

new object Y3 that is a copy of Y1. Also, Y3, in turn, has a reference to another new object,

Z3, which is a copy of Z1 (see Figure 2-7).

Now consider the following demonstration to get a better understanding.

Chapter 2 prototype pattern

44

 Demonstration 3
This simple demonstration shows you the difference between a shallow copy and a deep

copy. It also shows you why a deep copy is important in certain situations. The following

are the key characteristics of the program.

• There are two classes: Employee and EmpAddress.

• EmpAddress has only a single read-write property, called Address.

It sets the address of an employee, but the Employee class has three

read-write properties: Id, Name, and EmpAddress.

• To form an Employee object, you need to pass an ID and the name of

the employee, and at the same time, you need to pass the address. So,

you see code segments like the following.

EmpAddress initialAddress = new EmpAddress("21, abc Road, USA");

Employee emp = new Employee(1, "John", initialAddress);

• In the client code, first, you create an Employee object (emp), and then

you create another object, empClone, through cloning. You see the

following lines of code.

Console.WriteLine("Making a clone of emp1 now.");

Employee empClone = (Employee)emp.Clone();

• Later, you change the values inside empClone.

When you use a shallow copy, a side effect of this change is that the address of the emp

object also changed, which is unwanted. (The Prototype pattern is straightforward; you

should not change the original object when you work on a cloned copy of the object).

In the following example, the code for the deep copy is initially commented so that

you can see the effect of the shallow copy only.

Now go through the demonstration.

using System;

namespace ShallowVsDeepCopy

{

 class EmpAddress

 {

Chapter 2 prototype pattern

45

 public string Address { get; set; }

 public EmpAddress(string address)

 {

 this.Address = address;

 }

 public override string ToString()

 {

 return this.Address;

 }

 public object CloneAddress()

 {

 // Shallow Copy

 return this.MemberwiseClone();

 }

 }

 class Employee

 {

 public int Id { get; set; }

 public string Name { get; set; }

 public EmpAddress EmpAddress { get; set; }

 public Employee(int id, string name, EmpAddress empAddress)

 {

 this.Id = id;

 this.Name = name;

 this.EmpAddress = empAddress;

 }

 public override string ToString()

 {

 return string.Format("Employee Id is : {0},Employee Name is

: {1}, Employee Address is : {2}", this.Id,this.Name,this.

EmpAddress);

 }

Chapter 2 prototype pattern

46

 public object Clone()

 {

 // Shallow Copy

 return this.MemberwiseClone();

 #region For deep copy

 //Employee employee = (Employee)this.MemberwiseClone();

 //employee.EmpAddress = (EmpAddress)this.EmpAddress.

//CloneAddress();

 /*

 * NOTE:

 * Error: MemberwiseClone() is protected, you cannot access

it via a qualifier of type EmpAddress. The qualifier must be

Employee or its derived type.

 */

 //employee.EmpAddress = (EmpAddress)this.EmpAddress.

MemberwiseClone(); // error

 // return employee;

 #endregion

 }

 }

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Shallow vs Deep Copy Demo.***\n");

 EmpAddress initialAddress = new EmpAddress("21, abc Road, USA");

 Employee emp = new Employee(1, "John", initialAddress);

 Console.WriteLine("The original object is emp1 which is as

follows:");

 Console.WriteLine(emp);

 Console.WriteLine("Making a clone of emp1 now.");

Chapter 2 prototype pattern

47

 Employee empClone = (Employee)emp.Clone();

 Console.WriteLine("empClone object is as follows:");

 Console.WriteLine(empClone);

 Console.WriteLine("\n Now changing the name, id and address of

the cloned object ");

 empClone.Id=10;

 empClone.Name="Sam";

 empClone.EmpAddress.Address= "221, xyz Road, Canada";

 Console.WriteLine("Now emp1 object is as follows:");

 Console.WriteLine(emp);

 Console.WriteLine("And emp1Clone object is as follows:");

 Console.WriteLine(empClone);

 }

 }

}

 Output from a Shallow Copy
The following is the program’s output.

Shallow vs Deep Copy Demo.

The original object is emp1 which is as follows:

Employee Id is : 1,Employee Name is : John, Employee Address is : 21, abc

Road, USA

Making a clone of emp1 now.

empClone object is as follows:

Employee Id is : 1,Employee Name is : John, Employee Address is : 21, abc

Road, USA

 Now changing the name, id and address of the cloned object

Now emp1 object is as follows:

Employee Id is : 1,Employee Name is : John, Employee Address is : 221, xyz

Road, Canada

Chapter 2 prototype pattern

48

And emp1Clone object is as follows:

Employee Id is : 10,Employee Name is : Sam, Employee Address is : 221, xyz

Road, Canada

 Analysis
There is an unwanted side effect. In the previous output, the address of the original

object (emp) is modified due to modifying the cloned object (empClone). It happened

because both the original object and the cloned object pointed to the same address, and

they are not 100% disjointed. Figure 2-8 depicts the scenario.

Now let’s experiment with a deep copy implementation. Let’s modify the Clone

method of the Employee class as follows. (I uncommented the code for the deep copy

and commented out the code in the shallow copy.)

public Object Clone()

 {

 // Shallow Copy

 //return this.MemberwiseClone();

Figure 2-8. Shallow copy

Chapter 2 prototype pattern

49

 #region For deep copy

 Employee employee = (Employee)this.MemberwiseClone();

 employee.EmpAddress = (EmpAddress)this.EmpAddress.CloneAddress();

 /*

 * NOTE:

 Error: MemberwiseClone() is protected, you cannot access it

via a qualifier of type EmpAddress.The qualifier must be

Employee or its derived type.

 */

 //employee.EmpAddress = (EmpAddress)this.EmpAddress.

MemberwiseClone();//error

 return employee;

 #endregion

 }

 Output from Deep Copy
Here is the modified output.

Shallow vs Deep Copy Demo

The original object is emp1 which is as follows:

Employee Id is : 1,Employee Name is : John, Employee Address is : 21, abc

Road, USA

Making a clone of emp1 now.

empClone object is as follows:

Employee Id is : 1,Employee Name is : John, Employee Address is : 21, abc

Road, USA

Now changing the name, id and address of the cloned object

Now emp1 object is as follows:

Employee Id is : 1,Employee Name is : John, Employee Address is : 21, abc

Road, USA

And emp1Clone object is as follows:

Employee Id is : 10,Employee Name is : Sam, Employee Address is : 221, xyz

Road, Canada

Chapter 2 prototype pattern

50

 Analysis
This time, you do not see the unwanted side effect due to the modification to the

empClone object. This is because the original object and cloned object are different from

and independent of each other. Figure 2-9 depicts the scenario.

 Q&A Session
2.4 When should you choose a shallow copy over a deep copy (and vice versa)?
Here are the key reasons.

• A shallow copy is faster and less expensive. It is always better to use if

your target object has only the primitive fields.

• A deep copy is expensive and slow, but it is useful if your target object

contains many fields that have references to other objects.

2.5 In C#, if I need to copy an object, I need to use the MemberwiseClone()

method. Is this correct?

Figure 2-9. Deep copy

Chapter 2 prototype pattern

51

No, there are alternatives available. For example, you can opt for a serialization

mechanism when you implement a deep copy, or you can write your own copy

constructor, and so forth. Each approach has its pros and cons. So, in the end, it is the

developer’s call as to which approach best suits his needs. Many objects are very simple,

and they do not contain references to other objects. So, to copy from those objects, a

simple shallow copy mechanism is sufficient.

2.6 Can you show me an example that demonstrates the use of a copy
constructor?

Since C# does not support a default copy constructor, you may need to write your

own copy constructor. Demonstration 4 is for your reference.

 Demonstration 4
In this example, the Employee and EmpAddress classes both have almost the same

description as in demonstration 3. The only difference is that this time, instead of the

Clone() method in the Employee class, you notice the presence of a copy constructor

inside it. Let’s proceed.

This time, using the following instance constructor,

// Instance Constructor

public Employee(int id, string name, EmpAddress empAddress)

{

 this.Id = id;

 this.Name = name;

 this.EmpAddress = empAddress;

}

you can create an object of Employee as follows.

EmpAddress initialAddress = new EmpAddress("21, abc Road, USA");

Employee emp = new Employee(1, "John",initialAddress);

In this Employee class, there is also a user-defined copy constructor, which is as

follows.

// Copy Constructor

public Employee(Employee originalEmployee)

{

Chapter 2 prototype pattern

52

 this.Id = originalEmployee.Id;

 this.Name = originalEmployee.Name;

 //this.EmpAddress = (EmpAddress)this.EmpAddress.CloneAddress(); // ok

 this.EmpAddress = originalEmployee.EmpAddress.CloneAddress() as

EmpAddress; // also ok

}

You can see that by using the copy constructor, I’m copying both the simple types

(Id, Name) and the reference type (EmpAddress). So, once an Employee object like emp is

created, you can create another empClone object from it using the following code.

Employee empClone= new Employee(emp);

As in the previous demonstration, once I created a copy (empClone) from the existing

object (emp), I made changes to the copied object for verification purposes to make it

easier to understand. Here is the complete code.

using System;

namespace UserdefinedCopyConstructorDemo

{

 class EmpAddress

 {

 public string Address { get; set; }

 public EmpAddress(string address)

 {

 this.Address = address;

 }

 public override string ToString()

 {

 return this.Address;

 }

 public object CloneAddress()

 {

 // Shallow Copy

 return this.MemberwiseClone();

Chapter 2 prototype pattern

53

 }

 }

 class Employee

 {

 public int Id { get; set; }

 public string Name { get; set; }

 public EmpAddress EmpAddress { get; set; }

 // Instance Constructor

 public Employee(int id, string name, EmpAddress empAddress)

 {

 this.Id = id;

 this.Name = name;

 this.EmpAddress = empAddress;

 }

 // Copy Constructor

 public Employee(Employee originalEmployee)

 {

 this.Id = originalEmployee.Id;

 this.Name = originalEmployee.Name;

 //this.EmpAddress = (EmpAddress)this.EmpAddress.CloneAddress();

// ok

 this.EmpAddress = originalEmployee.EmpAddress.CloneAddress() as

EmpAddress; // Also ok

 }

 public override string ToString()

 {

 return string.Format("Employee Id is : {0},Employee Name is

: {1}, Employee Address is : {2}", this.Id, this.Name, this.

EmpAddress);

 }

 }

 class Program

 {

 static void Main(string[] args)

Chapter 2 prototype pattern

54

 {

 Console.WriteLine("***A simple copy constructor demo***\n");

 EmpAddress initialAddress = new EmpAddress("21, abc Road, USA");

 Employee emp = new Employee(1, "John",initialAddress);

 Console.WriteLine("The details of emp is as follows:");

 Console.WriteLine(emp);

 Console.WriteLine("\n Copying from emp1 to empClone now.");

 Employee empClone= new Employee(emp);

 Console.WriteLine("The details of empClone is as follows:");

 Console.WriteLine(empClone);

 Console.WriteLine("\nNow changing the id,name and address of

empClone.");

 empClone.Name = "Sam";

 empClone.Id = 2;

 empClone.EmpAddress.Address= "221, xyz Road, Canada";

 Console.WriteLine("The details of emp is as follows:");

 Console.WriteLine(emp);

 Console.WriteLine("The details of empClone is as follows:");

 Console.WriteLine(empClone);

 Console.ReadKey();

 }

 }

}

 Output
Here is the sample output.

A simple copy constructor demo

The details of emp is as follows:

Employee Id is : 1,Employee Name is : John, Employee Address is : 21, abc

Road, USA

 Copying from emp1 to empClone now.

The details of empClone is as follows:

Chapter 2 prototype pattern

55

Employee Id is : 1,Employee Name is : John, Employee Address is : 21, abc

Road, USA

Now changing the id,name and address of empClone.

The details of emp is as follows:

Employee Id is : 1,Employee Name is : John, Employee Address is : 21, abc

Road, USA

The details of empClone is as follows:

Employee Id is : 2,Employee Name is : Sam, Employee Address is : 221, xyz

Road, Canada

 Analysis
Note the final portion of the output. It reflects that the changes were properly made to

the copied object only.

This chapter showed you multiple implementations of prototype design patterns

and discussed the difference between a shallow copy and a deep copy. You also learned

about a user-defined copy constructor. Now you can move to the next chapter and learn

about the Builder pattern.

Chapter 2 prototype pattern

57
© Vaskaran Sarcar 2020
V. Sarcar, Design Patterns in C#, https://doi.org/10.1007/978-1-4842-6062-3_3

CHAPTER 3

Builder Pattern
This chapter covers the Builder pattern.

 GoF Definition
Separate the construction of a complex object from its representation so that the same

construction processes can create different representations.

 Concept
The Builder pattern is useful for creating complex objects that have multiple parts.

The object creation process should be independent of these parts; in other words,

the construction process does not care how these parts are assembled. In addition, as

per the definition, you should be able to use the same construction process to create

different representations of the objects.

According to the GoF, four different players are involved in this pattern, and they

have the relationship shown in Figure 3-1.

Figure 3-1. Builder pattern example

https://doi.org/10.1007/978-1-4842-6062-3_3#DOI

58

Here, Product is the complex object under consideration, and it is the final output.

Builder is an interface, which contains the methods to build parts of the final product.

ConcreteBuilder implements the Builder interface and assembles different parts of a

Product object. The ConcreteBuilder object builds the internal representations of the

Product instance, and it has a method that can be called to get this Product instance.

Director is responsible for creating the final object using the Builder interface. It is

important to note that Director is the class/object that decides the sequence of steps to

build the product. So, you can safely assume that a Director object can be used to vary

the sequence to make different products.

In demonstration 1, IBuilder denotes the Builder interface; Car and Motorcycle

are each ConcreteBuilders. Product and Director classes have their usual meaning.

 Real-World Example
To order a computer, different hardware parts are assembled based on the customer’s

preferences. For example, a customer can opt for a 500 GB hard disk with an Intel

processor, and another customer can choose a 250 GB hard disk with an AMD processor.

Here the computer is the final product, the customer plays the role of the director, and

the seller/assembler plays the role of the concrete builder.

 Computer-World Example
You can use this pattern when you want to convert one text format to another text

format, such as converting from RTF to ASCII.

 Implementation
This example has the following parts: IBuilder, Car, MotorCycle, Product, and

Director. IBuilder creates parts of the Product object, where Product represents

the complex object under construction. Car and MotorCycle are the concrete

implementations of the IBuilder interface. (Yes, IVehicle could be a better naming

instead of IBuilder, but I chose the latter one to emphasize that it’s a builder interface.)

They implement the IBuilder interface, which has the following representation.

Chapter 3 Builder pattern

59

 interface IBuilder

 {

 void StartUpOperations();

 void BuildBody();

 void InsertWheels();

 void AddHeadlights();

 void EndOperations();

 Product GetVehicle();

 }

That’s why Car and Motorcycle need to supply the body for the following

methods: StartUpOperations(), BuildBody(), InsertWheels(), AddHeadlights(),

EndOperations(), and GetVehicle(). The first five methods are straightforward; they

perform various operations at the beginning, build the body of the vehicle, add wheels

and headlights, and perform an operation at the end. (Let’s say that the manufacturer

wants to add a logo or polish the vehicle, and so forth. In the upcoming example, I make

the operation very simple by drawing a simple line for motorcycles and a dashed line for

cars.) The GetVehicle() method returns the ultimate product. The Product class is very

easy to understand, and although I used the LinkedList data structure in it, you can use

any of your preferred data structures for a similar purpose.

Finally, the Director class is responsible for constructing the final parts of these

products using the IBuilder interface. (See the structure defined by the GoF in

Figure 3- 1.) Therefore, in our code, the Director class looks as follows.

class Director

 {

 IBuilder builder;

 /*

 * A series of steps.In real life, these steps

 * can be much more complex.

 */

 public void Construct(IBuilder builder)

 {

 this.builder = builder;

 builder.StartUpOperations();

 builder.BuildBody();

Chapter 3 Builder pattern

60

 builder.InsertWheels();

 builder.AddHeadlights();

 builder.EndOperations();

 }

 }

A Director object calls this Construct() method to create different types of vehicles.

Now let’s go through the code to see how different parts are assembled for this pattern.

 Class Diagram
Figure 3-2 shows the class diagram.

 Solution Explorer View
Figure 3-3 shows the high-level structure of the program.

Figure 3-2. Class diagram

Chapter 3 Builder pattern

61

Note to keep it short, i did not extend the Car and Motorcycle classes. these
classes implement IBuilder and are easy to understand. You can also refer to the
class diagram (see Figure 3-2) if you need them. i followed the same mechanism
for some other screenshots of the book; that is, when a screenshot is really big, i
show only the important parts.

Figure 3-3. Solution Explorer view

Chapter 3 Builder pattern

62

 Demonstration 1
In this example, I used separate files for all different players. Here’s the complete

implementation.

// IBuilder.cs

namespace BuilderPatternSimpleExample

{

 // The common interface

 interface IBuilder

 {

 void StartUpOperations();

 void BuildBody();

 void InsertWheels();

 void AddHeadlights();

 void EndOperations();

 Product GetVehicle();

 }

}

// Car.cs

namespace BuilderPatternSimpleExample

{

 // Car is a ConcreteBuilder

 class Car : IBuilder

 {

 private string brandName;

 private Product product;

 public Car(string brand)

 {

 product = new Product();

 this.brandName = brand;

 }

Chapter 3 Builder pattern

63

 public void StartUpOperations()

 { // Starting with brandname

 product.Add("-----------");

 product.Add($"Car model name :{this.brandName}");

 }

 public void BuildBody()

 {

 product.Add("This is a body of a Car");

 }

 public void InsertWheels()

 {

 product.Add("4 wheels are added");

 }

 public void AddHeadlights()

 {

 product.Add("2 Headlights are added");

 }

 public void EndOperations()

 {

 product.Add("-----------");

 }

 public Product GetVehicle()

 {

 return product;

 }

 }

}

// Motorcycle.cs

namespace BuilderPatternSimpleExample

{

 // Motorcycle is another ConcreteBuilder

 class Motorcycle : IBuilder

 {

 private string brandName;

Chapter 3 Builder pattern

64

 private Product product;

 public Motorcycle(string brand)

 {

 product = new Product();

 this.brandName = brand;

 }

 public void StartUpOperations()

 {

 product.Add("_________________");

 }

 public void BuildBody()

 {

 product.Add("This is a body of a Motorcycle");

 }

 public void InsertWheels()

 {

 product.Add("2 wheels are added");

 }

 public void AddHeadlights()

 {

 product.Add("1 Headlights are added");

 }

 public void EndOperations()

 {

 // Finishing up with brandname

 product.Add($"Motorcycle model name :{this.brandName}");

 product.Add("_________________");

 }

 public Product GetVehicle()

 {

 return product;

 }

 }

}

Chapter 3 Builder pattern

65

// Product.cs

using System;

using System.Collections.Generic; // For LinkedList

namespace BuilderPatternSimpleExample

{

 // "Product"

 class Product

 {

 /*

 You can use any data structure that you prefer e.g.List<string> etc.

 */

 private LinkedList<string> parts;

 public Product()

 {

 parts = new LinkedList<string>();

 }

 public void Add(string part)

 {

 // Adding parts

 parts.AddLast(part);

 }

 public void Show()

 {

 Console.WriteLine("\nProduct completed as below :");

 foreach (string part in parts)

 Console.WriteLine(part);

 }

 }

}

// Director.cs

namespace BuilderPatternSimpleExample

{

Chapter 3 Builder pattern

66

 // "Director"

 class Director

 {

 private IBuilder builder;

 /*

 * A series of steps.In real life, these steps

 * can be much more complex.

 */

 public void Construct(IBuilder builder)

 {

 this.builder = builder;

 builder.StartUpOperations();

 builder.BuildBody();

 builder.InsertWheels();

 builder.AddHeadlights();

 builder.EndOperations();

 }

 }

}

// Client (Program.cs)

using System;

namespace BuilderPatternSimpleExample

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Builder Pattern Demo.***");

 Director director = new Director();

 IBuilder b1 = new Car("Ford");

 IBuilder b2 = new Motorcycle("Honda");

 // Making Car

 director.Construct(b1);

 Product p1 = b1.GetVehicle();

Chapter 3 Builder pattern

67

 p1.Show();

 // Making Motorcycle

 director.Construct(b2);

 Product p2 = b2.GetVehicle();

 p2.Show();

 Console.ReadLine();

 }

 }

}

 Output
Here’s the output.

Builder Pattern Demo.

Product completed as below :

Car model name :Ford

This is a body of a Car

4 wheels are added

2 Headlights are added

Product completed as below :

This is a body of a Motorcycle

2 wheels are added

1 Headlights are added

Motorcycle model name :Honda

Chapter 3 Builder pattern

68

 Analysis
Inside Main(), one Director instance has created two different products because

I passed two different builders in the Construct() method, which simply invokes

the StartUpOperations(), BuildBody(), InsertWheels(), AddHeadlights(),

and EndOperations() methods sequentially. Also, different builders have different

implementations for these methods.

 Q&A Session
3.1 What are the advantages of using the Builder pattern?
Here are some of the advantages.

• You direct the builder to build the objects step-by-step, and you

promote encapsulation by hiding the details of the complex

construction process. The director can retrieve the final product from

the builder when the whole construction process is over. In general, at a

high level, you seem to have only one method that makes the complete

product, but other internal methods are involved in the creation

process. So, you have finer control over the construction process.

• Using this pattern, the same construction process can produce

different products.

• You can also vary the internal representation of products.

3.2 What are the drawbacks associated with the Builder pattern?
Here are some of the drawbacks.

• It is not suitable if you want to deal with mutable objects (which can

be modified later).

• You may need to duplicate some portion of the code. These

duplications may have a significant impact in some contexts.

• To create different types of products, you need to create different

types of concrete builders.

Chapter 3 Builder pattern

69

3.3 Could you use an abstract class instead of the interface in the illustration of
this pattern?

Yes. You could use an abstract class instead of an interface in this example.

3.4 How do you decide whether to use an abstract class or an interface in an
application?

If you want centralized or default behaviors, an abstract class is a better choice. In

those cases, you can provide some default implementation. On the other hand, the

interface implementation starts from scratch and indicates rules/contracts such as

what is to be done, but it does not enforce the “how” part upon you. Also, interfaces are

preferred when you are trying to implement the concept of multiple inheritance.

Remember that if you need to add a new method in an interface, then you need to

track down all the implementations of that interface, and you need to put the concrete

implementation for that method in all those places. In such a case, an abstract class is

a better choice because you can add a new method in an abstract class with a default

implementation, and the existing code can run smoothly. But C# v8 in .NET Core 3.0

introduced the concept of default interface methods also. So, the last few lines of the

suggestion are best if you work with a legacy version, which is beyond C# v8.0.

Here are some important suggestions from the MSDN community.

• When you have multiple versions of components, use an abstract

class. Once you update the base class, all derived classes are updated

automatically. The interface, on the other hand, should not be

changed once created.

• When the functionalities are widespread among dissimilar/unrelated

objects, use an interface. Abstract classes should be used for closely

related objects which share common functionalities.

• Abstract classes allow you to partially implement your class, whereas

interfaces contain no implementation for any members (ignoring the

default interface methods in C# v8.0).

3.5 In the cars example, the model names were added at the beginning, but for
motorcycles, the model names were added at the end. Was this intentional?

Yes. I did this to demonstrate the fact that each of the concrete builders can decide

how it wants to produce individual parts of the final product. They have this freedom.

Chapter 3 Builder pattern

70

3.6 Why are you using a separate class for the director? You could use the client
code to play the role of the director.

No one constrains you from doing that. In the preceding implementation, I wanted

to separate this role from the client code in the implementation. But in the upcoming

demonstration, I use the client as a director.

3.7 What do you mean by client code?
The class that contains the Main() method is the client code.

3.8 Several times you mentioned varying steps. Can you demonstrate an
implementation where the final product is created with different variations and steps?

Good catch. You are asking me to demonstrate the real power of the Builder pattern.

Let’s consider another example, which is discussed next.

 An Alternative Implementation
Let’s consider an alternative implementation. It gives you more flexibility. Here are the

key characteristics of the modified implementation.

• To focus on the core design, in this implementation, let’s consider

cars as the final products.

• The client code itself is playing the role of a director in this

implementation.

• Like the previous example, IBuilder represents the builder interface,

but instead of the GetVehicle() method, this time, I renamed it

ConstructCar().

• As in demonstration 1, the Car class has implemented all the

methods defined in the interface, which is defined as follows:

interface IBuilder

 {

 /*

 * All these methods return type is IBuilder.

 * This will help us to apply method chaining.

 * I'm also providing values for default arguments.

 */

Chapter 3 Builder pattern

71

 IBuilder StartUpOperations(string optionalStartUpMessage =

" Making a car for you.");

 IBuilder BuildBody(string optionalBodyType = "Steel");

 IBuilder InsertWheels(int optionalNoOfWheels = 4);

 IBuilder AddHeadlights(int optionalNoOfHeadLights = 2);

 IBuilder EndOperations(string optionalEndMessage = "Car

construction is completed.");

 /*Combine the parts and make the final product.*/

 Product ConstructCar();

 }

Notice that these methods are similar to those in the previous demonstration, but

there are two major changes: their return type is IBuilder, and they accept the optional

parameters. This gives you flexibility—you can either pass arguments to them, or you

can simply omit them. But most importantly, since the return type is IBuilder, now you

can apply method chaining, which is why you see code segments like the following inside

Main().

Product customCar2 = new Car("Sedan")

.InsertWheels(7)

.AddHeadlights(6)

.StartUpOperations("Sedan creation in progress")

.BuildBody()

.EndOperations()//will take default end message

.ConstructCar();

customCar2.Show();

• In the previous segment, I did not pass any argument to the

EndOperations method. Also, before I call the StartUpOperations

method, I called the InsertWheels and AddHeadlights methods.

This gives freedom to the client object (who is the director in this

case), how he wants to create the final product.

• Finally, the Product class is as follows.

sealed class Product

 {

Chapter 3 Builder pattern

72

 /*

 * You can use any data structure that you prefer

 * e.g. List<string> etc.

 */

 private LinkedList<string> parts;

 public Product()

 {

 parts = new LinkedList<string>();

 }

 public void Add(string part)

 {

 // Adding parts

 parts.AddLast(part);

 }

 public void Show()

 {

 Console.WriteLine("\nProduct completed as below :");

 foreach (string part in parts)

 Console.WriteLine(part);

 }

 }

• I made the Product class sealed this time because I wanted to

prevent inheritance. Like the previous demonstration, the parts

attribute is private, and there is no setter method inside the class.

All these constructs can help you to promote immutability (this is

optional in the upcoming demonstration), which is often required

when you work with the Builder pattern. You could even exclude

the private modifier from the parts declaration because the class

member has private access by default.

• You can note another point. Inside the client code, I used customCar

and CustomCar2 to make cars. These are Product class instances.

The first one is a static field, and the second one is a non- static field. I

kept both to show you the variations of usage of Product class inside

Main().

Chapter 3 Builder pattern

73

 Class Diagram
Figure 3-4 shows the modified class diagram for the alternative implementation in

demonstration 2.

 Solution Explorer View
Figure 3-5 shows the new Solution Explorer view.

Figure 3-4. Class diagram for alternative implementation

Chapter 3 Builder pattern

74

 Demonstration 2
Here is an alternative implementation for the Builder pattern.

using System;

using System.Collections.Generic;

namespace BuilderPatternSecondDemonstration

{

 // The common interface

 interface IBuilder

Figure 3-5. Solution Explorer view

Chapter 3 Builder pattern

75

 {

 /*

 * All these methods return types are IBuilder.

 * This will help us to apply method chaining.

 * I'm also providing values for default arguments.

 */

 IBuilder StartUpOperations(string optionalStartUpMessage = "Making

a car for you.");

 IBuilder BuildBody(string optionalBodyType = "Steel");

 IBuilder InsertWheels(int optionalNoOfWheels = 4);

 IBuilder AddHeadlights(int optionalNoOfHeadLights = 2);

 IBuilder EndOperations(string optionalEndMessage = "Car

construction is complete.");

 // Combine the parts and make the final product.

 Product ConstructCar();

 }

 // Car class

 class Car : IBuilder

 {

 Product product;

 private string brandName;

 public Car(string brand)

 {

 product = new Product();

 this.brandName = brand;

 }

 public IBuilder StartUpOperations(string optionalStartUpMessage = "

Making a car for you.")

 { // Starting with brandname

 product.Add(optionalStartUpMessage);

 product.Add($"Car model name :{this.brandName}");

 return this;

 }

Chapter 3 Builder pattern

76

 public IBuilder BuildBody(string optionalBodyType = "Steel")

 {

 product.Add(($"Body type:{optionalBodyType}"));

 return this;

 }

 public IBuilder InsertWheels(int optionalNoOfWheels = 4)

 {

 product.Add(($"Wheels:{optionalNoOfWheels.ToString()}"));

 return this;

 }

 public IBuilder AddHeadlights(int optionalNoOfHeadLights = 2)

 {

 product.Add(($"Headlights:{optionalNoOfHeadLights.ToString()}"));

 return this;

 }

 public IBuilder EndOperations(string optionalEndMessage = "Car

construction is completed.")

 {

 product.Add(optionalEndMessage);

 return this;

 }

 public Product ConstructCar()

 {

 return product;

 }

 }

 // Product class

 /*

 * Making the class sealed. The attributes are also private and

 * there is no setter methods. These are used to promote immutability.

 */

Chapter 3 Builder pattern

77

 sealed class Product
 {
 /* You can use any data structure that you prefer e.g.List<string> etc.*/
 private LinkedList<string> parts;
 public Product()
 {
 parts = new LinkedList<string>();
 }

 public void Add(string part)
 {
 // Adding parts
 parts.AddLast(part);
 }

 public void Show()
 {
 Console.WriteLine("\nProduct completed as below :");
 foreach (string part in parts)
 Console.WriteLine(part);

 }

 }
 // Director class (Client Code)
 class Program
 {
 static Product customCar;
 static void Main(string[] args)
 {
 Console.WriteLine("***Builder Pattern alternative

implementation.***");
 /* Making a custom car (through builder)
 Note the steps:
 Step1:Get a builder object with required parameters
 Step2:Setter like methods are used.They will set the

optional fields also.
 Step3:Invoke the ConstructCar() method to get the final car.

 */

Chapter 3 Builder pattern

78

 customCar = new Car("Suzuki Swift").StartUpOperations()

//will take default message

 .AddHeadlights(6)

 .InsertWheels()//Will consider default value

 .BuildBody("Plastic")

 .EndOperations("Suzuki construction Completed.")

 .ConstructCar();

 customCar.Show();

 /*

 Making another custom car (through builder) with a different

sequence and steps.

 */

 // Directly using the Product class now.

 // (Just for a variation of usage)

 Product customCar2 = new Car("Sedan")

 .InsertWheels(7)

 .AddHeadlights(6)

 .StartUpOperations("Sedan creation in progress")

 .BuildBody()

 .EndOperations() // will take default end message

 .ConstructCar();

 customCar2.Show();

 }

 }

}

 Output
Here’s the new output. The lines in bold are to draw your attention to the differences in

the output.

Builder Pattern alternative implementation.

Product completed as below :

Making a car for you.

Car model name :Suzuki Swift

Chapter 3 Builder pattern

79

Headlights:6

Wheels:4

Body type:Plastic

Suzuki construction Completed.

Product completed as below :

Wheels:7

Headlights:6

Sedan creation in progress

Car model name :Sedan

Body type:Steel

Car construction is completed.

 Analysis
Look at the Main() method closely. You can see that the director (client) could create two

different products using the builder, and each time it followed a different sequence of

steps. This makes your application very flexible.

 Q&A Session
3.9 You are trying to promote immutability. What is the key benefit associated

with immutable objects?
Once constructed, they can be safely shared, and most importantly, they are thread

safe, and you save synchronization costs in a multithreaded environment.

3.10 When should I consider using the Builder pattern?
If you need to make a complex object that involves various steps of the construction

process, and at the same time, the products need to be immutable, the Builder pattern is

a good choice.

Chapter 3 Builder pattern

81
© Vaskaran Sarcar 2020
V. Sarcar, Design Patterns in C#, https://doi.org/10.1007/978-1-4842-6062-3_4

CHAPTER 4

Factory Method Pattern
This chapter covers the Factory Method pattern.

Note To better understand this pattern, I suggest you first read Chapter 24, which
covers the Simple Factory pattern. The Simple Factory pattern does not fall directly
into the Gang of Four design patterns, so it appears in Part II of the book; however,
the Factory Method pattern will make more sense if you first understand the pros
and cons of the Simple Factory pattern.

 GoF Definition
Define an interface for creating an object, but let subclasses decide which class to

instantiate. Factory Method lets a class defer instantiation to subclasses.

 Concept
Here you start with an abstract creator class that defines the basic structure of

an application, and the subclasses (that derive from this abstract class) take the

responsibility of doing the actual instantiation process. This concept will make sense to

you when you analyze the following examples.

 Real-World Example
The example from a Simple Factory pattern also applies here. For instance, in a

restaurant, depending on customer preferences, a chef can add more (or less) spice, oil,

and so forth during the preparation of the final product.

https://doi.org/10.1007/978-1-4842-6062-3_4#DOI

82

Let’s look at another example. Consider a car manufacturing company that produces

different models of a car every year. Depending on their market survey, they decide a

model and start manufacturing. Based on the model of the car, different parts are built

and assembled. A company should always be prepared for changes in which a customer

can opt for a better model in the future. If the company needs to create an entirely new

setup for a new model that demands only a few new features, that can hugely impact the

company’s profit margin. So, the company should set up the factory in such a way that it

can easily produce parts for the upcoming models.

 Computer-World Example
In database programming, you may need to support different database users. For

example, one user may use SQL Server, and the other may opt for Oracle. When you

need to insert data into your database, you first create a connection object, such as

SqlConnection or OracleConnection, and then can you proceed. If you put the code into

an if-else block (or switch statements), you may need to repeat lots of similar code,

which isn’t easily maintainable. Also, whenever you decide to start supporting a new

type of connection, you need to reopen your code and make some modifications. This

type of problem can be resolved using the Factory Method pattern.

 Implementation
The upcoming example provides an abstract creator class called AnimalFactory to

define the basic structure. According to the definition, the instantiation process is

carried out through the subclasses that derive from this abstract class. There are many

small classes in this example. I could make separate files for each of these classes, and

this approach is often encouraged by many developers. But these classes are very short,

simple, and straightforward. So, I placed them in a single file. I follow the same principle

for similar examples in this book.

ChaPTer 4 FaCTory MeThod PaTTern

83

 Class Diagram
Figure 4-1 shows the class diagram.

 Solution Explorer View
Figure 4-2 shows the high-level structure of the program.

Figure 4-1. Class diagram

ChaPTer 4 FaCTory MeThod PaTTern

84

 Demonstration 1
Here is the implementation. Similar to the Simple Factory pattern in Chapter 24, I use

the same inheritance hierarchy; that is, this time, you see that both the Dog and Tiger

classes implement the AboutMe() method of their parent interface IAnimal. So, you see

the following code segment at the beginning of the example.

public interface IAnimal

 {

 void AboutMe();

 }

Figure 4-2. Solution Explorer view

ChaPTer 4 FaCTory MeThod PaTTern

85

 public class Dog : IAnimal

 {

 public void AboutMe()

 {

 Console.WriteLine("The dog says: Bow-Wow. I prefer barking.");

 }

 }

 public class Tiger : IAnimal

 {

 public void AboutMe()

 {

 Console.WriteLine("The tiger says: Halum. I prefer hunting.");

 }

 }

You see another inheritance hierarchy where two concrete classes—called

DogFactory and TigerFactory—create dog and tiger objects. Each of them inherits

from an abstract class AnimalFactory. These two concrete classes defer the instantiation

process. I include supportive comments to help you better understand. The following

code segment describes it.

public abstract class AnimalFactory

 {

 /*

 Remember the GoF definition which says

 "....Factory method lets a class defer instantiation

 to subclasses." The following method will create a tiger or a dog

object, but at this point it does not know whether it will get a

dog or a tiger. It will be decided by

 the subclasses i.e. DogFactory or TigerFactory.

 So, the following method is acting like a factory

 (of creation).

 */

 public abstract IAnimal CreateAnimal();

 }

 // DogFactory is used to create dog

 public class DogFactory : AnimalFactory

ChaPTer 4 FaCTory MeThod PaTTern

86

 {

 public override IAnimal CreateAnimal()

 {

 // Creating a Dog

 return new Dog();

 }

 }

 // TigerFactory is used to create tigers

 public class TigerFactory : AnimalFactory

 {

 public override IAnimal CreateAnimal()

 {

 // Creating a Tiger

 return new Tiger();

 }

 }

Here is the complete demonstration.

using System;

namespace FactoryMethodPattern

{

 #region Animal Hierarchy

 /*

 * Both the Dog and Tiger classes will

 * implement the IAnimal interface method.

 */

 public interface IAnimal

 {

 void AboutMe();

 }

 // Dog class

 public class Dog : IAnimal

 {

 public void AboutMe()

 {

ChaPTer 4 FaCTory MeThod PaTTern

87

 Console.WriteLine("The dog says: Bow-Wow. I prefer barking.");

 }

 }

 //Tiger class

 public class Tiger : IAnimal

 {

 public void AboutMe()

 {

 Console.WriteLine("The tiger says: Halum. I prefer hunting.");

 }

 }

 #endregion

 #region Factory Hierarchy

 // Both DogFactory and TigerFactory will use this.

 public abstract class AnimalFactory

 {

 /*

 Remember the GoF definition which says

 "....Factory method lets a class defer instantiation

 to subclasses." The following method will create a Tiger

 or a Dog, but at this point it does not know whether

 it will get a dog or a tiger. It will be decided by

 the subclasses i.e. DogFactory or TigerFactory.

 So, the following method is acting like a factory

 (of creation).

 */

 public abstract IAnimal CreateAnimal();

 }

 // DogFactory is used to create dog

 public class DogFactory : AnimalFactory

 {

 public override IAnimal CreateAnimal()

 {

 // Creating a Dog

ChaPTer 4 FaCTory MeThod PaTTern

88

 return new Dog();

 }

 }

 // TigerFactory is used to create tigers

 public class TigerFactory : AnimalFactory

 {

 public override IAnimal CreateAnimal()

 {

 // Creating a Tiger

 return new Tiger();

 }

 }

 #endregion

 class Client

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Factory Pattern Demo.***\n");

 // Creating a Tiger Factory

 AnimalFactory tigerFactory = new TigerFactory();

 // Creating a tiger using the Factory Method

 IAnimal tiger = tigerFactory.CreateAnimal();

 tiger.AboutMe();

 // Creating a DogFactory

 AnimalFactory dogFactory = new DogFactory();

 // Creating a dog using the Factory Method

 IAnimal dog = dogFactory.CreateAnimal();

 dog.AboutMe();

 Console.ReadKey();

 }

 }

}

ChaPTer 4 FaCTory MeThod PaTTern

89

 Output
The following is the output from running the program.

Factory Pattern Demo.

The tiger says: Halum. I prefer hunting.

The dog says: Bow-Wow. I prefer barking.

 Modified Implementation 1
Now let’s look at two important modifications that you can make to demonstration 1.

In the first modified implementation, more flexibilities are added to our earlier

implementation. Note that the AnimalFactory class is an abstract class, so you can take

advantage of using it. Suppose you want a subclass to follow a rule that can be imposed

from its parent (or base) class. For simplicity, let's impose the rule through a console

message which is shown in the following demonstration.

 Partial Demonstration 1
In the modified implementation, I introduce a new method called MakeAnimal() in the

AnimalFactory class.

// Modifying the AnimalFactory class.

public abstract class AnimalFactory

 {

 public IAnimal MakeAnimal()

 {

 Console.WriteLine("AnimalFactory.MakeAnimal()-You cannot

ignore parent rules.");

 IAnimal animal = CreateAnimal();

 animal.AboutMe();

 return animal;

 }

 /*

 Remember the GoF definition which says

 "....Factory method lets a class defer instantiation

ChaPTer 4 FaCTory MeThod PaTTern

90

 to subclasses." Following method will create a Tiger

 or a Dog class, but at this point it does not know whether

 it will get a dog or a tiger. It will be decided by

 the subclasses i.e.DogFactory or TigerFactory.

 So, the following method is acting like a factory

 (of creation).

 */

 public abstract IAnimal CreateAnimal();

 }

The client code has adopted these changes; that is, instead of calling

CreateAnimal() and then using AboutMe(). I simply invoke MakeAnimal() inside the

following code segment. The old code is commented for your reference and to compare

to the new code.

class Client

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Factory Pattern Modified Demo.***\n");

 // Creating a Tiger Factory

 AnimalFactory tigerFactory = new TigerFactory();

 // Creating a tiger using the Factory Method

 //IAnimal tiger = tigerFactory.CreateAnimal();

 //tiger.AboutMe();

 IAnimal tiger = tigerFactory.MakeAnimal();

 // Creating a DogFactory

 AnimalFactory dogFactory = new DogFactory();

 // Creating a dog using the Factory Method

 //IAnimal dog = dogFactory.CreateAnimal();

 //dog.AboutMe();

 IAnimal dog = dogFactory.MakeAnimal();

 Console.ReadKey();

 }

 }

ChaPTer 4 FaCTory MeThod PaTTern

91

 Output
Here is the modified output.

Factory Pattern Modified Demo.

AnimalFactory.MakeAnimal()-You cannot ignore parent rules.

The tiger says: Halum. I prefer hunting.

AnimalFactory.MakeAnimal()-You cannot ignore parent rules.

The dog says: Bow-Wow. I prefer barking.

 Analysis
Now in each case, you see the following warning: “…You cannot ignore parent rules.” It is

an enhancement to the demonstration 1.

 Q&A Session
4.1 Why have you separated the CreateAnimal() method from the client code?
I did it for one purpose. I wanted the subclasses to create specialized objects. If you

look carefully, you see that only this “creational part” varies across the products. I discuss

this in detail in the “Q&A Session” section of Chapter 24.

4.2 What are the advantages of using a factory like this?
Here are some of the key advantages.

• You are separating the code that varies from the code that does not

vary (in other words, the advantages of using the Simple Factory

pattern are still present), which helps you easily maintain the code.

• The code is not tightly coupled, so you can add new classes such as

Lion, Bear, and so on, at any time in the system without modifying

the existing architecture. In other words, I followed the “closed for

modification but open for extension” principle.

4.3 What are the challenges of using a factory like this?
If you need to deal with many different types of objects, then the overall performance

of the system can be affected.

ChaPTer 4 FaCTory MeThod PaTTern

92

4.4 The Factory Method pattern supports two parallel hierarchies. Is this correct?
Good catch. Yes, from the class diagram, it is evident that this pattern supports

parallel class hierarchies (see Figure 4-3).

In this example, AnimalFactory, DogFactory, and TigerFactory are placed in one

hierarchy, and IAnimal, Dog, and Tiger are placed in another hierarchy. So, you can see

that the creators and their creations/products are the two hierarchies that are running in

parallel.

4.5 You should always mark the factory method with an abstract keyword so that
subclasses can complete them. Is this correct?

No. You may be interested in a default factory method when the creator has no

subclasses. In that case, you cannot mark the factory method with an abstract keyword.

However, to see the real power of the Factory Method pattern, you may need to

follow the design that is implemented here in most cases.

Figure 4-3. The two class hierarchies in this example

ChaPTer 4 FaCTory MeThod PaTTern

93

4.6 It appears that the Factory Method pattern is not that much different from
the Simple Factory pattern. Is this correct?

If you look at the subclasses in the examples in both chapters, you may find some

similarities. But you should not forget the key aim of the Factory Method pattern; it

is supplying you with the framework through which different subclasses can make

different products. In the Simple Factory pattern, you cannot vary the products in a

similar manner. You can think of the Simple Factory pattern as a one-time deal, but most

importantly, your creational part will not be closed for modification. Whenever you want

to add something new, you need to add an if-else block or a switch statement in the

factory class of your Simple Factory pattern.

In this context, always keep in mind the GoF definition, which says, “The Factory

Method pattern lets a class defer instantiation to subclasses.” Look at the modified

implementation closely. You can see that CreateAnimal() creates a dog or a tiger by

appropriate subclasses of AnimalFactory. So, CreateAnimal() is the factory method that is

abstract in this design. When MakeAnimal() uses CreateAnimal() inside its body, it has no

clue whether it is going to work on a dog or a tiger. The subclasses of AnimalFactory only

know to create the concrete implementations (a dog or a tiger) for this application.

Note In the System.Web.WebRequest class, you can see the Create method,
which has two overloads. In this method, you can pass a Uniform resource
Identifier (UrI). This method determines the appropriate protocol for a request
and returns the appropriate subclass, for example, httpWebrequest (if the UrI
starts with http:// or https://), FtpWebrequest (if the UrI starts with ftp://), and
so forth. If the UrI changes from hTTP to FTP, the underlying code does not need
to be changed, and the caller does not need to worry about detailed specifics
of the protocol. This architecture promotes the use of factory patterns, but
httpWebrequest is not recommended for new development. Microsoft suggests
that you use System.net.http.httpClient class instead.

 Modified Implementation 2
This chapter ends with an additional update to our initial implementation. Now let’s

update demonstration 1 by using method parameters. Let’s proceed. You can get the full

implementation when you download the code from the Apress website. For brevity, only

the partial demonstration is presented here.

ChaPTer 4 FaCTory MeThod PaTTern

94

 Partial Demonstration 2
This code segment shows that you can make the original implementation even better if

you use method parameters inside CreateAnimal(). And this approach offers a benefit.

Instead of creating DogFactory, TigerFactory, and so forth, you can make only one

concrete factory class, as follows.

#region Factory Hierarchy

 // Both DogFactory and TigerFactory will use this.

 public abstract class AnimalFactory

 {

 /*

 Remember the GoF definition which says

 "....Factory method lets a class defer instantiation

 to subclasses." Following method will create a Tiger

 or a Dog, but at this point it does not know whether

 it will get a dog or a tiger. It will be decided by

 the subclasses i.e.DogFactory or TigerFactory.

 So, the following method is acting like a factory

 (of creation).

 */

 public abstract IAnimal CreateAnimal(string animalType);

 }

 /*

 * ConcreteAnimalFactory is used to create dogs or tigers

 * based on method parameter of CreateAnimal() method.

 */

 public class ConcreteAnimalFactory : AnimalFactory

 {

 public override IAnimal CreateAnimal(string animalType)

 {

 if (animalType.Contains("dog"))

 {

 // Creating a Dog

 return new Dog();

 }

ChaPTer 4 FaCTory MeThod PaTTern

95

 else

 if (animalType.Contains("tiger"))

 {

 // Creating a Dog

 return new Tiger();

 }

 else

 {

 throw new ArgumentException("You need to pass either a dog

or a tiger as an argument.");

 }

 }

 }

 #endregion

Now you can pass either a “dog” string or a “tiger” string inside the CreateAnimal(...)

method to create a Dog or a Tiger instance. To accommodate these changes, you can

update the client code as follows. (This time, animalFactory creates both the Dog and

Tiger instances. Everyone knows that “programming to interfaces” has this kind of

benefit.)

class Client

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Factory Pattern Demo.***");

 Console.WriteLine("***It's a modified version using method

parameter(s).***\n");

 // Creating a factory that can produce animals

 AnimalFactory animalFactory = new ConcreteAnimalFactory();

 // Creating a tiger using the Factory Method

 IAnimal tiger = animalFactory.CreateAnimal("tiger");

 tiger.AboutMe();

 // Now creating a dog.

 IAnimal dog = animalFactory.CreateAnimal("dog");

 dog.AboutMe();

ChaPTer 4 FaCTory MeThod PaTTern

96

 Console.ReadKey();

 }

 }

 Output
Now if you execute this program, you can get the following output.

Factory Pattern Demo.

It's a modified version using method parameter(s).

The tiger says: Halum. I prefer hunting.

The dog says: Bow-Wow. I prefer barking.

I hope that you now have a better understanding of how to implement the Factory

Method pattern. The two modified implementations are provided as a reference. (Full

implementations are provided on the Apress website.). It is up to you whether you want

to use either (or both) of these modifications in your program. But you should keep in

mind that the factory method should create the appropriate object for the client behind

the scene, and it’s the ultimate motto of the pattern.

ChaPTer 4 FaCTory MeThod PaTTern

97
© Vaskaran Sarcar 2020
V. Sarcar, Design Patterns in C#, https://doi.org/10.1007/978-1-4842-6062-3_5

CHAPTER 5

Abstract Factory Pattern
This chapter covers the Abstract Factory pattern.

 GoF Definition
Provide an interface for creating families of related or dependent objects without

specifying their concrete classes.

Note The Abstract Factory pattern will make more sense to you if you understand
the Simple Factory pattern (Chapter 24) and the Factory Method pattern (Chapter 4).
The Simple Factory pattern does not fall directly into the Gang of Four design
patterns, so the discussion of that pattern appears in Part II of the book. I suggest
that you read Chapters 4 and 24 before jumping into this one.

 Concept
An abstract factory is often referred to as a factory of factories. This pattern provides a

way to encapsulate a group of individual factories that have a common theme. In this

process, you do not instantiate a class directly; instead, you instantiate a concrete factory

and, after that, create products using the factory.

In our upcoming example, a factory instance (animalFactory) is instantiated. By

using this factory instance, I create dog and tiger instances (dogs and tigers are the final

products), which is why you see the following segment inside the client code.

// Making a wild dog and wild tiger through WildAnimalFactory

IAnimalFactory animalFactory = FactoryProvider.GetAnimalFactory("wild");

IDog dog = animalFactory.GetDog();

https://doi.org/10.1007/978-1-4842-6062-3_5#DOI

98

ITiger tiger = animalFactory.GetTiger();

dog.AboutMe();

tiger.AboutMe();

This pattern suits best when products are similar, but the product families are

different (for example, a domestic dog is quite different from a wild dog). This pattern

helps you to interchange specific implementations without changing the code that uses

them, even at runtime. However, it may result in unnecessary complexity and extra work.

Even debugging becomes tough in some cases.

 Real-World Example
Suppose that you are decorating your room with two different types of tables; one

is made of wood and the other one of steel. For the wooden type, you need to visit a

carpenter, and for the other type, you may need to go to a metal shop. All of these are

table factories. So, based on demand, you decide what kind of factory you need.

 Computer-World Example
ADO.NET implements similar concepts to establish a connection to a database.

 Implementation
Wikipedia describes a typical structure of this pattern, which is similar to what is shown

in Figure 5-1 (see https://en.wikipedia.org/wiki/Abstract_factory_pattern).

ChAPTer 5 AbSTrACT FACTory PATTern

https://en.wikipedia.org/wiki/Abstract_factory_pattern

99

I follow a similar structure in this chapter’s implementation. In this example, there

are two types of animals: pet animals and wild animals. Program.cs is the client who is

looking for some animals (which are wild dogs, pet dogs, wild tigers, and pet tigers in this

case). You explore the construction processes of both pet animals and wild animals in

this implementation.

IAnimalFactory is an abstract factory. Two concrete factories called

WildAnimalFactory and PetAnimalFactory inherits from this abstract factory. You can

see that these concrete factories are responsible for creating the concrete products of

dogs and tigers. As their names suggest, WildAnimalFactory creates wild animals (wild

dogs and wild tigers), and PetAnimalFactory creates pet animals (pet dogs and pet

tigers). The following summarizes the participants and their roles.

• IAnimalFactory: Abstract factory

• WildAnimalFactory: A concrete factory that implements

IAnimalFactory; it creates wild dogs and wild tigers

• PetAnimalFactory: A concrete factory that implements

IAnimalFactory, but this factory creates pet dogs and pet tigers

Figure 5-1. Abstract Factory pattern

ChAPTer 5 AbSTrACT FACTory PATTern

100

• ITiger and IDog: Abstract products

• PetTiger, PetDog, WildTiger, and WildDog: The concrete products.

PetTiger and WildTiger implement the ITiger interface. PetDog

and WildDog implement the IDog interface. The IDog and ITiger

interfaces have only one method, AboutMe(), which is used in both

the Simple Factory pattern and Factory Method pattern.

• A static class called FactoryProvider is used in the client code as

follows:

// Making a wild dog and wild tiger through

// WildAnimalFactory

IAnimalFactory animalFactory = FactoryProvider.

GetAnimalFactory("wild");

IDog dog = animalFactory.GetDog();

ITiger tiger = animalFactory.GetTiger();

dog.AboutMe();

tiger.AboutMe();

• From the bold line in the previous code segment, you can see that

I’m not directly instantiating the factory instance; instead, I’m

using the FactoryProvider static class to get the factory instance.

(This class has a similar structure as to when you used the concrete

factories in the Factory Method pattern.) FactoryProvider provides

the appropriate factory based on the parameter passed inside

GetAnimalFactory(...) method.

ChAPTer 5 AbSTrACT FACTory PATTern

101

 Class Diagram
Figure 5-2 shows the class diagram.

 Solution Explorer View
Figure 5-3 shows the high-level structure of the program.

Figure 5-2. Class diagram

ChAPTer 5 AbSTrACT FACTory PATTern

102

 Demonstration 1
Here’s the complete program.

using System;

namespace AbstractFactoryPattern

{

Figure 5-3. Solution Explorer view

ChAPTer 5 AbSTrACT FACTory PATTern

103

 // Abstract Factory

 public interface IAnimalFactory

 {

 IDog GetDog();

 ITiger GetTiger();

 }

 // Abstract Product-1

 public interface ITiger

 {

 void AboutMe();

 }

 // Abstract Product-2

 public interface IDog

 {

 void AboutMe();

 }

 // Concrete product-A1(WildTiger)

 class WildTiger : ITiger

 {

 public void AboutMe()

 {

 Console.WriteLine("Wild tiger says: I prefer hunting in

jungles. Halum.");

 }

 }

 // Concrete product-B1(WildDog)

 class WildDog : IDog

 {

 public void AboutMe()

 {

 Console.WriteLine("Wild dog says: I prefer to roam freely in

jungles. Bow-Wow.");

 }

 }

ChAPTer 5 AbSTrACT FACTory PATTern

104

 // Concrete product-A2(PetTiger)

 class PetTiger : ITiger

 {

 public void AboutMe()

 {

 Console.WriteLine("Pet tiger says: Halum. I play in an animal

circus.");

 }

 }

 // Concrete product-B2(PetDog)

 class PetDog : IDog

 {

 public void AboutMe()

 {

 Console.WriteLine("Pet dog says: Bow-Wow. I prefer to stay at

home.");

 }

 }

 // Concrete Factory 1-Wild Animal Factory

 public class WildAnimalFactory : IAnimalFactory

 {

 public ITiger GetTiger()

 {

 return new WildTiger();

 }

 public IDog GetDog()

 {

 return new WildDog();

 }

 }

 // Concrete Factory 2-Pet Animal Factory

 public class PetAnimalFactory : IAnimalFactory

 {

 public IDog GetDog()

ChAPTer 5 AbSTrACT FACTory PATTern

105

 {

 return new PetDog();

 }

 public ITiger GetTiger()

 {

 return new PetTiger();

 }

 }

 // Factory provider

 class FactoryProvider

 {

 public static IAnimalFactory GetAnimalFactory(string factoryType)

 {

 if (factoryType.Contains("wild"))

 {

 // Returning a WildAnimalFactory

 return new WildAnimalFactory();

 }

 else

 if (factoryType.Contains("pet"))

 {

 // Returning a PetAnimalFactory

 return new PetAnimalFactory();

 }

 else

 {

 throw new ArgumentException("You need to pass either wild

or pet as argument.");

 }

 }

 }

 // Client

 class Program

 {

ChAPTer 5 AbSTrACT FACTory PATTern

106

 static void Main(string[] args)

 {

 Console.WriteLine("***Abstract Factory Pattern Demo.***\n");

 // Making a wild dog and wild tiger through WildAnimalFactory

 IAnimalFactory animalFactory = FactoryProvider.

GetAnimalFactory("wild");

 IDog dog = animalFactory.GetDog();

 ITiger tiger = animalFactory.GetTiger();

 dog.AboutMe();

 tiger.AboutMe();

 Console.WriteLine("******************");

 // Making a pet dog and pet tiger through PetAnimalFactory now.

 animalFactory = FactoryProvider.GetAnimalFactory("pet");

 dog = animalFactory.GetDog();

 tiger = animalFactory.GetTiger();

 dog.AboutMe();

 tiger.AboutMe();

 Console.ReadLine();

 }

 }

}

 Output
Here’s the output.

Abstract Factory Pattern Demo.

Wild dog says: I prefer to roam freely in jungles. Bow-Wow.

Wild tiger says: I prefer hunting in jungles. Halum.

Pet dog says: Bow-Wow.I prefer to stay at home.

Pet tiger says: Halum.I play in an animal circus.

ChAPTer 5 AbSTrACT FACTory PATTern

107

 Q&A Session
5.1 Both the IDog and ITiger interfaces contain methods that have the same

names. For example, both interfaces contain the AboutMe() method. Is that mandatory?
No. You can use different names for your methods. Also, the number of methods

can be different in these interfaces. However, in Chapter 24, I cover the Simple Factory

pattern, and in Chapter 4, I cover the Factory Method pattern. In this chapter, I

continued the examples, which is why I kept the same method.

5.2 What are the challenges of using an abstract factory like this?
Any change in the abstract factory forces you to propagate the modification to the

concrete factories. Standard design philosophy suggests you to program to an interface,

but not to an implementation. This is one of the key principles that developers should

always keep in mind. In most scenarios, developers do not want to change their abstract

factories.

Also, the overall architecture is complex, which is why debugging is very challenging

in some cases.

5.3 How do you distinguish a Simple Factory pattern from a Factory Method
pattern or an Abstract Factory pattern?

I discuss the differences between a Simple Factory pattern and a Factory Method

pattern in the “Q&A Session” section in Chapter 4.

Let’s revise how the client code uses these factories, as shown in the following

diagrams. Here’s a code snippet from the Simple Factory pattern.

IAnimal preferredType = null;

SimpleFactory simpleFactory = new SimpleFactory();

#region The code region that can vary based on users preference

/*

* Since this part may vary, we're moving the

* part to CreateAnimal() in SimpleFactory class.

*/

preferredType = simpleFactory.CreateAnimal();

#endregion

#region The codes that do not change frequently.

preferredType.AboutMe();

#endregion

ChAPTer 5 AbSTrACT FACTory PATTern

108

Figure 5-4 shows the Simple Factory pattern.

Here’s the code snippet from the Factory Method pattern.

// Creating a Tiger Factory

AnimalFactory tigerFactory = new TigerFactory();

// Creating a tiger using the Factory Method

IAnimal tiger = tigerFactory.CreateAnimal();

tiger.AboutMe();

// Creating a DogFactory

AnimalFactory dogFactory = new DogFactory();

// Creating a dog using the Factory Method

IAnimal dog = dogFactory.CreateAnimal();

dog.AboutMe();

Figure 5-5 shows the Factory Method pattern.

Figure 5-5. Factory Method pattern

Figure 5-4. Simple Factory pattern

ChAPTer 5 AbSTrACT FACTory PATTern

109

Here’s the code snippet from Abstract Factory pattern.

// Making a wild dog and wild tiger through WildAnimalFactory

IAnimalFactory animalFactory = FactoryProvider.GetAnimalFactory("wild");

IDog dog = animalFactory.GetDog();

ITiger tiger = animalFactory.GetTiger();

dog.AboutMe();

tiger.AboutMe();

Console.WriteLine("******************");

// Making a pet dog and pet tiger through PetAnimalFactory now.

animalFactory = FactoryProvider.GetAnimalFactory("pet");

dog = animalFactory.GetDog();

tiger = animalFactory.GetTiger();

dog.AboutMe();

tiger.AboutMe();

Figure 5-6 shows the Abstract Factory pattern.

Figure 5-6. Abstract Factory pattern

ChAPTer 5 AbSTrACT FACTory PATTern

110

In short, with the Simple Factory pattern, you can separate the code that varies from

the rest of the code (basically, you decouple the client code). This approach helps you to

manage the code more easily. Another key advantage of this approach is that the client is

unaware of how the objects are created. So, it promotes both security and abstraction.

However, this approach can violate the open-closed principle. You can overcome

this drawback using the Factory Method pattern, which allows subclasses to decide how

the instantiation process is completed. Put simply, you delegate the object creation to

the subclasses that implement the factory method to create objects.

The abstract factory is basically a factory of factories. It creates a family of related

objects, but it does not depend on the concrete classes. In this pattern, you encapsulate

a group of individual factories that have a common theme. In this process, you do not

instantiate a class directly; instead, you get a concrete factory (I used a provider for that)

and, after that, create products using the factory.

Lastly, I tried to keep the examples simple. A factory method promotes inheritance,

and its subclasses need to implement the factory method to create objects. The Abstract

Factory pattern can promote object composition by creating related objects using the

methods that are exposed in a factory interface. In the end, all the factories promote

loose coupling by reducing the dependencies on concrete classes.

ChAPTer 5 AbSTrACT FACTory PATTern

PART I.B

Structural Patterns

113
© Vaskaran Sarcar 2020
V. Sarcar, Design Patterns in C#, https://doi.org/10.1007/978-1-4842-6062-3_6

CHAPTER 6

Proxy Pattern
This chapter covers the Proxy pattern.

 GoF Definition
Provide a surrogate or placeholder for another object to control access to it.

 Concept
You need to support this kind of design because, in many situations, direct

communication with an original object is not always possible. This is due to many

factors, including security and performance issues, resource constraints, the final

product is in the development phase, and so forth. Proxies can be of different types,

but fundamentally it is a substitute (or a placeholder) for an original object. As a result,

when a client interacts with a proxy object, it appears that it is directly talking to the

actual object. So, using this pattern, you may want to use a class that can perform as an

interface to the original one.

 Real-World Example
In a classroom, when one student is absent, his best friend may try to mimic his voice

during roll call to get the teacher to think his friend is there. Apart from this example,

you can consider the example from a different domain, for instance, ATMs. An ATM

implementation can hold proxy objects for bank information that can exist on a remote

server.

https://doi.org/10.1007/978-1-4842-6062-3_6#DOI

114

 Computer-World Example
In the real programming world, creating multiple instances of a complex object can

be costly because you may need resources that are not easily available or allocatable.

In such a situation, you can create multiple proxy objects that can point to the original

object. This mechanism can help you to save the computer/system memory and

improve the performance of your application.

Another very common use of a proxy is seen when a user doesn’t want to disclose the

true IP address of his/her machine and make it anonymous.

In WCF applications, you may notice WCF client proxies, which a client application

uses to communicate with the service. You can also configure a REST API to work behind

a proxy server to promote an authorized communication.

 Implementation
In this program, Subject is an abstract class with an abstract method called

DoSomeWork(). It looks like the following.

public abstract class Subject

 {

 public abstract void DoSomeWork();

 }

ConcreteSubject is a concrete class that inherits from Subject and completes the

DoSomeWork() method. So, it looks like the following.

public class ConcreteSubject : Subject

 {

 public override void DoSomeWork()

 {

 Console.WriteLine("I've processed your request.");

 }

 }

Chapter 6 proxy pattern

115

Let’s assume you want to restrict the client from directly invoking the method in

ConcreteSubject. (Consider the cases discussed in the computer-world examples

for some reasons behind this.) So, you make a proxy class called Proxy. In our

implementation, the Proxy class also contains a method called DoSomeWork(), and a

client can use this method using a Proxy instance. When a client calls the DoSomeWork()

method of the proxy object that, in turn, this call is propagated to the DoSomeWork()

method in the ConcreteSubject object. This lets the clients feel as if they have invoked

the method from ConcreteSubject directly, which is why the Proxy class looks like the

following.

public class Proxy : Subject

 {

 Subject subject;

 public override void DoSomeWork()

 {

 Console.WriteLine("Welcome, my client.");

 /*

 Lazy initialization:We'll not instantiate until

 the method is called.

 */

 if (subject == null)

 {

 subject = new ConcreteSubject();

 }

 subject.DoSomeWork();

 }

 }

Chapter 6 proxy pattern

116

 Class Diagram
Figure 6-1 shows the class diagram.

 Solution Explorer View
Figure 6-2 shows the high-level structure of the program. (Note that you could separate

the proxy class into a different file, but since the parts are small in this example, I put

everything in a single file. The same comment applies to other programs in this book.)

Figure 6-1. Class diagram

Chapter 6 proxy pattern

117

 Demonstration 1
Here’s the complete implementation.

using System;

namespace ProxyPatternDemo

{

 /// <summary>

 /// Abstract class Subject

 /// </summary>

 public abstract class Subject

 {

 public abstract void DoSomeWork();

 }

 /// <summary>

 /// ConcreteSubject class

 /// </summary>

Figure 6-2. Solution Explorer view

Chapter 6 proxy pattern

118

 public class ConcreteSubject : Subject

 {

 public override void DoSomeWork()

 {

 Console.WriteLine("I've processed your request.");

 }

 }

 /// <summary>

 /// Proxy class

 /// </summary>

 public class Proxy : Subject

 {

 Subject subject;

 public override void DoSomeWork()

 {

 Console.WriteLine("Welcome, my client.");

 /*

 Lazy initialization:We'll not instantiate the object until the

method is called.

 */

 if (subject == null)

 {

 subject = new ConcreteSubject();

 }

 subject.DoSomeWork();

 }

 }

 /// <summary>

 /// Client class

 /// </summary>

 class Client

 {

 static void Main(string[] args)

 {

Chapter 6 proxy pattern

119

 Console.WriteLine("***Proxy Pattern Demo.***\n");

 Subject proxy = new Proxy();

 proxy.DoSomeWork();

 Console.ReadKey();

 }

 }

}

 Output
Here’s the output.

Proxy Pattern Demo.

Welcome, my client.

I've processed your request.

 Q&A Session
6.1 What are the different types of proxies?
These are the common types of proxies.

• Remote proxies: These proxies can hide an object that sits in a

different address space.

• Virtual proxies: These proxies perform optimization techniques, such

as creating a heavy object on an on-demand basis.

• Protection proxies: These proxies generally deal with different

access rights.

• Smart reference: Performs additional housekeeping when a client

accesses an object. A typical operation may include counting the

number of references to an object at a certain moment in time.

Chapter 6 proxy pattern

120

6.2 You could create the ConcreteSubject instance in the proxy class constructor
as shown here.

/// <summary>

/// Proxy class

/// </summary>

public class Proxy : Subject

 {

 Subject subject;

 public Proxy()

 {

 // Instantiating inside the constructor

 subject = new ConcreteSubject();

 }

 public override void DoSomeWork()

 {

 Console.WriteLine("Proxy call happening now..");

 cs.DoSomeWork();

 }

}

Is this correct?
Yes, you could do that. But do not forget that a proxy class can have additional

methods that may not rely on ConcreteSubject. So, if you need these methods from

the Proxy class, and you follow your proposed design, whenever you instantiate a proxy

object, you instantiate an object of the ConcreteSubject class also. So, this may end up

creating unnecessary objects.

6.3 Using this lazy instantiation process, you may create unnecessary objects in
a multithreaded application. Is this correct?

Yes. It is a simple illustration to give you the core idea behind the actual pattern.

In the discussions of the Singleton pattern in Chapter 1, we analyzed some alternative

approaches which tell you how to work in a multithreaded environment. You can always

refer to those discussions in situations like this. (For example, in this scenario, you could

implement a smart proxy to ensure that an object is locked before you grant access to the

object).

Chapter 6 proxy pattern

121

6.4 Can you give an example of a remote proxy?
Suppose you want to call a method of an object, but the object is running in a

different address space (for example, in a different location or on a different computer).

How do you proceed? With the help of remote proxies, you can call the method on the

proxy object, which in turn forwards the call to the actual object that is running on

the remote machine. (Demonstration 1 is an example of this category in this context

if the actual method exists on a different computer and you connect to it via a proxy

object over a network.) This type of need can be realized through different well-known

mechanisms such as ASP.NET, CORBA, COM/DCOM, or Java’s RMI. In C# applications,

you can exercise a similar mechanism with WCF (.NET Framework version 3.0 and

onward) or .NET web services/remoting (mainly used in earlier versions). It is useful to

note that .NET remoting is not supported by .NET Core, and Microsoft doesn’t plan to

add this support in the future (see https://docs.microsoft.com/en-us/dotnet/core/

porting/net-framework-tech-unavailable#:~:text=NET%20Remoting%20isn't%20

supported,IO).

Figure 6-3 shows a simple remote proxy structure.

6.5 When do you use a virtual proxy?
A virtual proxy preserves memory from being allocated to an object. If the actual

object creation is an expensive operation, you can create a light copy of the intended

object with the most important details and supply it to the user. The expensive object

is created only when it is truly needed. For example, you can use the concept to avoid

loading an extremely large image unnecessarily for better application performance.

Figure 6-3. A simple remote proxy diagram

Chapter 6 proxy pattern

https://docs.microsoft.com/en-us/dotnet/core/porting/net-framework-tech-unavailable#:~:text=NET Remoting isn’t supported
https://docs.microsoft.com/en-us/dotnet/core/porting/net-framework-tech-unavailable#:~:text=NET Remoting isn’t supported
https://docs.microsoft.com/en-us/dotnet/core/porting/net-framework-tech-unavailable#:~:text=NET Remoting isn’t supported

122

6.6 When do you use a protection proxy?
In an organization, the security team can implement a protection proxy to block

Internet access to specific web sites.

Consider the following example, which is a modified version of the Proxy pattern

implementation described earlier. For simplicity, let’s assume you have only three

registered users who can exercise the DoSomeWork() proxy method. If an unwanted user

(named Robin) tries to invoke the method, the system rejects his access requests. When

the system rejects this kind of unwanted access, there is no point in making a proxy

object. In the upcoming example, these registered users are initialized in the proxy class

constructor, but I avoid the instantiation of a ConcreteSubject object inside it. It helps

me to avoid creating an unnecessary object creation for an unauthorized user.

Now let’s go through the modified implementation.

 Demonstration 2
Here’s the modified implementation.

using System;

using System.Linq; // For Contains() method below

namespace ProxyPatternQAs

{

 /// <summary>

 /// Abstract class Subject

 /// </summary>

 public abstract class Subject

 {

 public abstract void DoSomeWork();

 }

 /// <summary>

 /// ConcreteSubject class

 /// </summary>

 public class ConcreteSubject : Subject

 {

 public override void DoSomeWork()

 {

Chapter 6 proxy pattern

123

 Console.WriteLine("I've processed your request.\n");

 }

 }

 /// <summary>

 /// Proxy class

 /// </summary>

 public class Proxy : Subject

 {

 Subject subject;

 string[] registeredUsers;

 string currentUser;

 public Proxy(string currentUser)

 {

 /*

 * Avoiding to instantiate ConcreteSubject

 * inside the Proxy class constructor.

 */

 //subject = new ConcreteSubject();

 // Registered users

 registeredUsers = new string[] { "Admin", "Rohit", "Sam" };

 this.currentUser = currentUser;

 }

 public override void DoSomeWork()

 {

 Console.WriteLine($"{currentUser} wants to access into the system.");

 if (registeredUsers.Contains(currentUser))

 {

 Console.WriteLine($"Welcome, {currentUser}.");

 /* Lazy initialization: We'll not instantiate until the

method is called through an authorized user. *.

 if (subject == null)

 {

 subject = new ConcreteSubject();

 }

Chapter 6 proxy pattern

124

 subject.DoSomeWork();

 }

 else

 {

 Console.WriteLine($"Sorry {currentUser}, you do not have

access into the system.");

 }

 }

 }

 /// <summary>

 /// Client

 /// </summary>

 class Client

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Proxy Pattern Demo2.***\n");

 // Authorized user-Admin

 Subject proxy = new Proxy("Admin");

 proxy.DoSomeWork();

 // Authorized user-Sam

 proxy = new Proxy("Sam");

 proxy.DoSomeWork();

 // Unauthorized User-Robin

 proxy = new Proxy("Robin");

 proxy.DoSomeWork();

 Console.ReadKey();

 }

 }

}

Chapter 6 proxy pattern

125

 Output
Here’s the modified output.

Proxy Pattern Demo2.

Admin wants to access into the system.

Welcome, Admin.

I've processed your request.

Sam wants to access into the system.

Welcome, Sam.

I've processed your request.

Robin wants to access into the system.

Sorry Robin, you do not have access into the system.

6.7 It looks as if proxies act like decorators (see Chapter 7). Is this correct?
Sometimes a proxy implementation can have some similarities to a decorator,

but you should not forget the true intent of a proxy. Decorators focus on adding

responsibilities, whereas proxies focus on controlling access to an object. So, if you

remember their purpose, in most cases, you can distinguish proxies from decorators.

6.8 When should I consider designing a proxy?
The following are some important use cases where proxies can help you.

• You are writing test cases for a scenario that is still in the

development phase or very hard to reproduce. For example, when

you want to evaluate behavior in an application that can be seen

in a customer environment only, but you also recognize that when

the application is running, the probability of getting the behavior is

very low. In such a case, you can mimic the customer environment

behavior in your proxy object and execute your test cases to evaluate

the correctness of this behavior. You do not want your client to talk

directly to the target object.

• You want to hide the complexity and enhance the security of the system.

Chapter 6 proxy pattern

126

6.9 What are the cons associated with proxies?
Here are some factors that you should keep in mind while using this pattern.

• The overall response time can be an issue because you are not

directly talking to the actual object.

• You need to maintain additional layers for the proxies.

• A proxy can hide the actual responses from objects, which may create

confusion in some scenarios.

Chapter 6 proxy pattern

127
© Vaskaran Sarcar 2020
V. Sarcar, Design Patterns in C#, https://doi.org/10.1007/978-1-4842-6062-3_7

CHAPTER 7

Decorator Pattern
This chapter covers the Decorator pattern.

 GoF Definition
Attach additional responsibilities to an object dynamically. Decorators provide a flexible

alternative to subclassing for extending functionality.

 Concept
From the GoF definition, it is evident that this pattern uses an alternative to subclassing

(i.e., inheritance). If inheritance is not allowed, how do you proceed? Yes, you guessed it

right. It prescribes you to use composition instead of inheritance.

By following the SOLID principle, this pattern promotes the concept where your

class is closed for modification but open for extension. (If you want to learn more about

SOLID principles, go to https://en.wikipedia.org/wiki/SOLID_(object- oriented_

design).) Using this pattern, you can add special functionality to a specific object

without altering the underlying class.

A decorator is just like a wrapper (or topping) that surrounds the original object

and adds additional functionality to it. This is why the Decorator pattern is also called a

Wrapper pattern. This pattern is most effective when you add decorators dynamically.

Since decorators are often added dynamically, it’s perfectly fine if you do not want them

in a later phase of development, because the original object may still work.

https://doi.org/10.1007/978-1-4842-6062-3_7#DOI
https://en.wikipedia.org/wiki/SOLID_(object-­oriented_design)
https://en.wikipedia.org/wiki/SOLID_(object-­oriented_design)

128

 Real-World Example
Suppose that you own a single-story house, and you decide to build an additional floor

on top of it. You may not want to change the architecture of the ground floor, but you

may want to employ a new design for the newly added floor that can fit on top of the

existing architecture.

Figures 7-1, 7-2, and 7-3 illustrate this concept.

Figure 7-1. Original house

Figure 7-2. Original house with a decorator (the additional floor is built on top of
original structure)

Figure 7-3. Applying an additional decorator on top of the existing decorator and
modifying the house (now painting the house)

Chapter 7 DeCorator pattern

129

Note the case shown in Figure 7-3 is optional. You can use an existing decorator
object to enhance the behavior, or you can create a new decorator object and add
the new behavior to it. In step 2, you could also directly paint the original house.
You don’t need to start painting once the new floor is added.

 Computer-World Example
Suppose that you want to add border properties to a GUI-based toolkit. You could do this

using inheritance, but that cannot be treated as an ultimate solution because you may

not have absolute control over everything since the beginning. So, this technique is static

by nature.

In this context, decorators can offer you a flexible approach. They promote the

concept of dynamic choices. For example, you can wrap the component in another

object (similar to Figures 7-2 and 7-3). The enclosing object is called a decorator, and

it must conform to the interface of the component that it decorates. It forwards the

requests to the original component and can perform additional operations before or

after those requests. In fact, this concept allows you to add an unlimited number of

responsibilities.

 Implementation
In this example, five players are involved: AbstractHome, ConcreteHome,

AbstractDecorator, FloorDecorator, and PaintDecorator.

AbstractHome is defined as follows.

 abstract class AbstractHome

 {

 public double AdditionalPrice { get; set; }

 public abstract void MakeHome();

 }

Chapter 7 DeCorator pattern

130

A concrete implementor of AbstractHome must implement the MakeHome() method.

In addition to this, you can set a price by using the AdditionalPrice property. This is

why a concrete class called ConcreteHome inherits from AbstractHome, completes the

original structure, and looks like the following (I assume that once the home is built,

there is no immediate modification needed; so, AdditionalPrice is initially set to 0).

 class ConcreteHome : AbstractHome

 {

 public ConcreteHome()

 {

 AdditionalPrice = 0;

 }

 public override void MakeHome()

 {

 Console.WriteLine($"Original House is constructed.Price for

this 10000$");

 }

 }

At this moment, you can opt for an additional floor to this existing home, or you

may want to paint the home or you may want to do both. So, FloorDecorator and

PaintDecorator both come into the picture. Though it was not strictly needed, to share

the common code, both decorators inherit from AbstractDecorator, which has the

following structure.

abstract class AbstractDecorator : AbstractHome

 {

 protected AbstractHome home;

 public AbstractDecorator(AbstractHome home)

 {

 this.home = home;

 this.AdditionalPrice = 0;

 }

 public override void MakeHome()

 {

 home.MakeHome();

 }

 }

Chapter 7 DeCorator pattern

131

Notice that AbstractDecorator holds a reference to AbstractHome. So, the concrete

decorators (FloorDecorator or PaintDecorator in this example) are decorating an

instance of AbstractHome.

Now let’s look at the structure of a concrete decorator, FloorDecorator, which is as

follows.

 // Floor Decorator used to add a floor

 class FloorDecorator : AbstractDecorator

 {

 public FloorDecorator(AbstractHome home) : base(home)

 {

 this.AdditionalPrice = 2500;

 }

 public override void MakeHome()

 {

 base.MakeHome();

 // Adding a floor on top of original house.

 AddFloor();

 }

 private void AddFloor()

 {

 Console.WriteLine($"-Additional Floor added.Pay additional

{AdditionalPrice}$ for it .");

 }

 }

You can see that FloorDecorator can add a floor (using the AddFloor() method),

and when you use it, you must pay an additional $2500 for the additional construction.

More importantly, before adding a floor, it calls the MakeHome() method of the

AbstractHome class, which in turn calls the MakeHome() method from a concrete

implementation of AbstractHome (i.e., ConcreteHome).

Chapter 7 DeCorator pattern

132

PaintDecorator acts similarly, but you have to pay more for it. (Yes, I assume that

you are using luxurious paints for your home.)

 Class Diagram
Figure 7-4 shows the most important parts of the class diagram.

Figure 7-4. Class diagram. Client class is not shown here.

Chapter 7 DeCorator pattern

133

 Solution Explorer View
Figure 7-5 shows the high-level structure of the program.

Figure 7-5. Solution Explorer view

Chapter 7 DeCorator pattern

134

 Demonstration
Here’s the complete implementation, which tested two scenarios (marked with #region).

In scenario 1, I add one floor to the existing home and then paint it. In scenario 2, I paint

the original home and then add two floors on top of the existing architecture.

using System;

namespace DecoratorPatternDemo

{

 abstract class AbstractHome

 {

 public double AdditionalPrice { get; set; }

 public abstract void MakeHome();

 }

 class ConcreteHome : AbstractHome

 {

 public ConcreteHome()

 {

 AdditionalPrice = 0;

 }

 public override void MakeHome()

 {

 Console.WriteLine($"Original House is constructed.Price for

this $10000");

 }

 }

 abstract class AbstractDecorator : AbstractHome

 {

 protected AbstractHome home;

 public AbstractDecorator(AbstractHome home)

 {

 this.home = home;

 this.AdditionalPrice = 0;

 }

 public override void MakeHome()

 {

Chapter 7 DeCorator pattern

135

 home.MakeHome();//Delegating task

 }

 }

 // Floor Decorator is used to add a floor

 class FloorDecorator : AbstractDecorator

 {

 public FloorDecorator(AbstractHome home) : base(home)

 {

 //this.home = home;

 this.AdditionalPrice = 2500;

 }

 public override void MakeHome()

 {

 base.MakeHome();

 // Adding a floor on top of original house.

 AddFloor();

 }

 private void AddFloor()

 {

 C onsole.WriteLine($"-Additional Floor added.Pay additional

${AdditionalPrice} for it .");

 }

 }

 // Paint Decorator used to paint the home.

 class PaintDecorator : AbstractDecorator

 {

 public PaintDecorator(AbstractHome home):base(home)

 {

 //this.home = home;

 this.AdditionalPrice = 5000;

 }

Chapter 7 DeCorator pattern

136

 public override void MakeHome()

 {

 base.MakeHome();

 // Painting home.

 PaintHome();

 }

 private void PaintHome()

 {

 Console.WriteLine($"--Painting done.Pay additional

${AdditionalPrice} for it .");

 }

 }

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Decorator pattern Demo***\n");

 #region Scenario-1

 Console.WriteLine("\n**Scenario-1:");

 Console.WriteLine("**Building home.Adding floor and then

painting it.**");

 AbstractHome home = new ConcreteHome();

 Console.WriteLine("Current bill breakups are as follows:");

 home.MakeHome();

 // Applying a decorator

 // Adding a floor

 home = new FloorDecorator(home);

 Console.WriteLine("\nFloor added.Current bill breakups are as

follows:");

 home.MakeHome();

 // Working on top of the previous decorator.

 // Painting the home

 home = new PaintDecorator(home);

Chapter 7 DeCorator pattern

137

 Console.WriteLine("\nPaint applied.Current bill breakups are as

follows:");

 home.MakeHome();

 #endregion

 #region Scenario-2

 Console.WriteLine("\n**Scenario-2:");

 Console.WriteLine("**Building home,painting it and then adding

two additional floors on top of it.**");

 // Fresh start once again.

 home = new ConcreteHome();

 Console.WriteLine("\nGoing back to original home.Current bill

breakups are as follows:");

 home.MakeHome();

 // Applying paint on original home.

 home = new PaintDecorator(home);

 Console.WriteLine("\nPaint applied.Current bill breakups are as

follows:");

 home.MakeHome();

 // Adding a floor on the painted home.

 home = new FloorDecorator(home);

 Console.WriteLine("\nFloor added.Current bill breakups are as

follows:");

 home.MakeHome();

 // Adding another floor on the current home.

 home = new FloorDecorator(home);

 Console.WriteLine("\nFloor added.Current bill breakups are as

follows:");

 home.MakeHome();

 #endregion

 Console.ReadKey();

 }

 }

}

Chapter 7 DeCorator pattern

138

 Output
Decorator pattern Demo

**Scenario-1:

Building home. Adding floor and then painting it.

Current bill breakups are as follows:

Original House is constructed. Price for this $10000

Floor added. Current bill breakups are as follows:

Original House is constructed.Price for this $10000

-Additional Floor added.Pay additional $2500 for it.

Paint applied. Current bill breakups are as follows:

Original House is constructed.Price for this $10000

-Additional Floor added. Pay additional $2500 for it.

--Painting done. Pay additional $5000 for it.

**Scenario-2:

**Building home, painting it and then adding two additional floors on top

of it.**

Going back to original home. Current bill breakups are as follows:

Original House is constructed. Price for this $10000

Paint applied. Current bill breakups are as follows:

Original House is constructed. Price for this $10000

--Painting done. Pay additional $5000 for it.

Floor added.Current bill breakups are as follows:

Original House is constructed.Price for this $10000

--Painting done.Pay additional $5000 for it.

-Additional Floor added. Pay additional $2500 for it.

Floor added.Current bill breakups are as follows:

Original House is constructed. Price for this $10000

--Painting done.Pay additional $5000 for it.

-Additional Floor added.Pay additional $2500 for it.

-Additional Floor added.Pay additional $2500 for it.

Chapter 7 DeCorator pattern

139

 Q&A Session
7.1 Can you explain how composition promotes a dynamic behavior that

inheritance cannot?
When a derived class inherits from a base class, it inherits the behavior of the base

class at that time only. Though different subclasses can extend the base or parent class

in different ways, this type of binding is known at compile time. So, the method is static.

But by using the concept of composition, as in the previous example, you get dynamic

behavior.

When you design a parent class, you may not have enough visibility about what

kind of additional responsibilities your clients may want in some later phase. Since the

constraint is that you cannot modify the existing code, in this case, object composition

not only outclasses inheritance, but it also ensures that you are not introducing bugs in

the old architecture.

Lastly, in this context, you must try to remember a key design principle that says

classes should be open for extension but closed for modification.

7.2 What are the key advantages of using a decorator?
Here are some of the key advantages.

• The existing structure is untouched, so you cannot introduce bugs

there.

• New functionalities can be easily added to an existing object.

• You can not only add a behavior to an interface, but you can alter the

behavior too.

• You do not need to predict/implement all the supported

functionalities at once (for example, in the initial design phase).

You can develop incrementally. For example, you can add decorator

objects one by one to support your needs. You must acknowledge

that if you make a complex class first and then want to extend the

functionalities, it will be a tedious process.

7.3 How is the overall design pattern different from inheritance?
You can add, alter, or remove responsibilities by simply attaching or detaching

decorators. But with simple inheritance techniques, you need to create new classes for

new responsibilities. So, you may end up with a complex system.

Chapter 7 DeCorator pattern

140

Consider the example again. Suppose that you want to add a new floor, paint the

house, and do some extra work. To fulfill this need, you can start with FloorDecorator

because it is already providing the support to add a floor, and then use PaintDecorator

to paint the house. Then you need to add a simple wrapper to complete those additional

responsibilities.

But if you start with inheritance, and then you may have multiple subclasses;

for example, one for adding a floor and one for painting the house, as shown in

Figure 7-6 (a hierarchical inheritance).

So, if you need an additional painted floor with some extra features, you may need to

end up with a design like in Figure 7-7.

Figure 7-7. A class (Extra Features) needs to inherit from multiple base classes

Figure 7-6. A hierarchical inheritance

Chapter 7 DeCorator pattern

141

Now you feel the heat of the “diamond effect” because in many programming

languages, including C#, multiple base classes are not allowed.

You also discover that the inheritance mechanism is not only much more

challenging and time-consuming compared to the Decorator pattern, but it may

promote duplicate code in your application. Lastly, do not forget that inheritance

promotes only compile-time binding (not dynamic binding).

7.4 Why are you creating a class with a single responsibility? You could make
a subclass that can simply add a floor and then paint. In that case, you may end up
with fewer subclasses. Is this correct?

If you are familiar with the SOLID principles, you know that there is a principle

called single responsibility. The idea behind this principle is that each class should

have responsibility for a single part of the functionality provided in the software. The

Decorator pattern is effective when you use the single responsibility principle because

you can simply add or remove responsibilities dynamically.

7.5 What are the disadvantages associated with this pattern?
I believe that if you are careful, there are no significant disadvantages. But if you

create too many decorators in the system, it will be hard to maintain and debug. So, in

that case, they can create unnecessary confusion.

7.6 In the example, the AbstractDecorator class is abstract, but there is no
abstract method in it. How is this possible?

In C#, a class can be abstract without containing an abstract method, but the reverse

is not true. In other words, if a class contains at least one abstract method, it means that

the class is incomplete, and you are forced to mark it with the abstract keyword.

Also, if you read the comment in Figure 7-8, you are delegating the task to a

concrete decorator, in this case, because you want to use and instantiate the concrete

decorators only.

Chapter 7 DeCorator pattern

142

So, in this example, you cannot simply instantiate an AbstractDecorator instance,

because it is marked with the abstract keyword.

The following line creates a compilation error.

AbstractDecorator abstractDecorator = new AbstractDecorator();

saying “CS0144 Cannot create an instance of the abstract class or

interface 'AbstractDecorator'”

7.7 Are decorators used for dynamic binding only?
No. You can use the concept for both static and dynamic binding. But dynamic

binding is its strength, so I concentrated on that here. The GoF definition also focuses on

dynamic binding only.

Note the I/o streams implementations in the .net Framework, .net Core, and
Java use the Decorator pattern. For example, the BufferedStream class inherits
from the Stream class. note the presence of two overloaded constructors in
this class; each of them takes a Stream (parent class) as a parameter (just like
demonstration 1). When you see this kind of construct, there is a possibility that
you are seeing an example of the Decorator pattern. BufferedStream is acting
like a decorator in .net.

Figure 7-8. An abstract class: AbstractDecorator

Chapter 7 DeCorator pattern

143
© Vaskaran Sarcar 2020
V. Sarcar, Design Patterns in C#, https://doi.org/10.1007/978-1-4842-6062-3_8

CHAPTER 8

Adapter Pattern
This chapter covers the Adapter pattern.

 GoF Definition
Convert the interface of a class into another interface client’s expect. Adapter lets classes

work together that otherwise could not because of incompatible interfaces.

 Concept
From the GoF definition, you can guess that this pattern deals with at least two

incompatible inheritance hierarchies. In a domain-specific system, the clients are

habituated on how to invoke methods in software. Those methods can follow an

inheritance hierarchy. Now assume that you need to upgrade your system and need to

implement a new inheritance hierarchy. When you do that, you do not want to force your

clients to learn the new way to access the software. So, what can you do? The solution is

simple: you write an adapter that accepts client requests and translates these requests

in a form that the methods in the new hierarchy can understand. As a result, clients can

enjoy the updated software without any hassle.

The following examples can also help you better understand the patterns.

 Real-World Example
A common use of this pattern is when you use an electrical outlet adapter/AC power

adapter on international travels. These adapters can act as middlemen so that an

electronic device, such as a laptop that accepts a US power supply, can be plugged into a

European power outlet.

https://doi.org/10.1007/978-1-4842-6062-3_8#DOI

144

Consider another example. Suppose that you need to charge your mobile phone. But

you see that the electrical outlet is not compatible with your charger. In this case, you

may need to use an adapter. Even a translator who is converting one language to another

follows this pattern in real life.

Let’s consider a situation where you have two different shapes (e.g., Shape1 and

Shape2), neither of which is a rectangle, and they look like Figure 8-1.

Let’s further assume that combining these two different shapes, you need to form

a rectangle. How do you proceed? One simple solution is to bring another bounded X–

shaped figure (filled with color), as shown in Figure 8-2.

Then attach the three shapes, as shown in Figure 8-3.

Figure 8-1. Before using an adapter

Figure 8-2. An adapter

Figure 8-3. After using an adapter

Chapter 8 adapter pattern

145

In programming, you can think of Shape1 and Shape2 as two different interfaces that

can’t work together unless you combine them to form a rectangle using this X-shaped

figure. The X-shaped figure is playing the role of an adapter in this scenario.

 Computer-World Example
Suppose that you have an application that can be broadly classified into two parts:

the user interface (UI or the front end) and the database (the back end). Through the

user interface, clients can pass some specific type of data or objects. Your database is

compatible with those objects and can store them smoothly. Over time, you may realize

that you need to upgrade your software to make your clients happy. So, you may want

to allow some other type of object also to pass through the UI. But in this case, the first

issue comes from your database because it cannot store these new types of objects. In

such a situation, you can use an adapter that takes care of the conversion of these new

objects to a compatible form that your existing database can accept and store.

 Implementation
In the upcoming example, there are two hierarchies: one for Rectangle and one

for Triangle. IRectangle interface has two methods called CalculateArea() and

AboutMe(). The Rectangle class implements the IRectangle interface and form the first

hierarchy as follows.

class Rectangle : IRectangle

 {

 double length;

 public double width;

 public Rectangle(double length, double width)

 {

 this.length = length;

 this.width = width;

 }

Chapter 8 adapter pattern

146

 public double CalculateArea()

 {

 return length * width;

 }

 public void AboutMe()

 {

 Console.WriteLine("Actually, I am a Rectangle");

 }

 }

The ITriangle interface has two methods: CalculateAreaOfTriangle() and

AboutTriangle(). The Triangle class implements the ITriangle interface and forms

another hierarchy, as follows.

class Triangle : ITriangle

 {

 double baseLength; // base

 double height; // height

 public Triangle(double length, double height)

 {

 this.baseLength = length;

 this.height = height;

 }

 public double CalculateAreaOfTriangle()

 {

 return 0.5 * baseLength * height;

 }

 public void AboutTriangle()

 {

 Console.WriteLine("Actually, I am a Triangle.");

 }

 }

These two hierarchies are easy to understand. Now, let’s look at a problem in which

you need to calculate the area of a triangle using the Rectangle hierarchy.

How do you proceed? You can use an adapter to solve this problem, as shown in the

following example.

Chapter 8 adapter pattern

147

/*

 * RectangleAdapter is implementing IRectangle.

 * So, it needs to implement all the methods

 * defined in the target interface.

 */

class RectangleAdapter : IRectangle

{

 ITriangle triangle;

 public RectangleAdapter(ITriangle triangle)

 {

 this.triangle = triangle;

 }

 public void AboutMe()

 {

 triangle.AboutTriangle();

 }

 public double CalculateArea()

 {

 return triangle.CalculateAreaOfTriangle();

 }

}

Notice the beauty of using the adapter. You are not making any changes to any

hierarchy, and at a high level, it appears that by using the IRectangle methods, you

can calculate the area of a triangle. This is because you are using the AboutMe() and

CalculateArea() methods of the IRectangle interface at a high level, but inside those

methods, you are invoking the ITriangle methods.

Apart from this advantage, you can also extend the benefit of using an adapter. For

example, suppose that you need to have a large number of rectangles in an application,

but there is a constraint on the number of rectangles you create. (For simplicity, let's

assume that in an application, you are allowed to create a maximum of five rectangles

and ten triangles, but when the application runs, in certain scenarios, you may need to

supply ten rectangles.) In those cases, using this pattern, you can use some of the triangle

objects that can behave like rectangle objects. How? Well, when using the adapter, you

are calling CalculateArea(), but it is invoking CalculateAreaOfTriangle(). So, you

Chapter 8 adapter pattern

148

can modify the method body as you need. For example, in your application, let's assume

that each rectangle object has a length of 20 units and a width of 10 units, whereas

each triangle object has a base of 20 units and a height of 10 units. So, each rectangle

object has an area of 20*10=200 square units, and each triangle object has an area of

0.5*20*10=100 square units. So, you can simply multiply each triangle area by 2 to get an

equivalent rectangle area and substitute (or use) it where a rectangle area is needed.

I hope that this makes sense to you.

Finally, you need to keep in mind that this technique suits best when you deal with

objects that are not exactly the same but very similar.

Note In the context of the previous point, you should not try to convert a circle
area to a rectangle area (or do a similar type of conversion), because they are
different shapes. In this example, I talk about triangles and rectangles because
they have similarities.

 Class Diagram
Figure 8-4 shows a class diagram of the important parts of the program.

Figure 8-4. Class diagram. Client class is not shown here.

Chapter 8 adapter pattern

149

 Solution Explorer View
Figure 8-5 shows a high-level structure of the program.

Figure 8-5. Solution Explorer view

Chapter 8 adapter pattern

150

 Demonstration 1
Here’s the implementation.

using System;

namespace AdapterPatternDemonstration

{

 interface IRectangle

 {

 void AboutMe();

 double CalculateArea();

 }

 class Rectangle : IRectangle

 {

 double length;

 public double width;

 public Rectangle(double length, double width)

 {

 this.length = length;

 this.width = width;

 }

 public double CalculateArea()

 {

 return length * width;

 }

 public void AboutMe()

 {

 Console.WriteLine("Actually, I am a Rectangle");

 }

 }

 interface ITriangle

 {

 void AboutTriangle();

 double CalculateAreaOfTriangle();

 }

Chapter 8 adapter pattern

151

 class Triangle : ITriangle

 {

 double baseLength; // base

 double height; // height

 public Triangle(double length, double height)

 {

 this.baseLength = length;

 this.height = height;

 }

 public double CalculateAreaOfTriangle()

 {

 return 0.5 * baseLength * height;

 }

 public void AboutTriangle()

 {

 Console.WriteLine("Actually, I am a Triangle.");

 }

 }

 /*

 * RectangleAdapter is implementing IRectangle.

 * So, it needs to implement all the methods

 * defined in the target interface.

 */

 class RectangleAdapter : IRectangle

 {

 ITriangle triangle;

 public RectangleAdapter(ITriangle triangle)

 {

 this.triangle = triangle;

 }

 public void AboutMe()

 {

 triangle.AboutTriangle();

 }

Chapter 8 adapter pattern

152

 public double CalculateArea()

 {

 return triangle.CalculateAreaOfTriangle();

 }

 }

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Adapter Pattern Demo***\n");

 IRectangle rectangle = new Rectangle(20, 10);

 Console.WriteLine("For initial verification purposes, printing

the areas of both shapes.");

 Console.WriteLine("Rectangle area is:{0} Square unit",

rectangle.CalculateArea());

 ITriangle triangle = new Triangle(20, 10);

 Console.WriteLine("Triangle area is:{0} Square unit", triangle.

CalculateAreaOfTriangle());

 Console.WriteLine("\nNow using the adapter.");

 IRectangle adapter = new RectangleAdapter(triangle);

 Console.Write("True fact : ");

 adapter.AboutMe();

 Console.WriteLine($" and my area is : {adapter.CalculateArea()}

square unit.");

 // Alternative way:

 Console.WriteLine("\nUsing the adapter in a different way now.");

 // Passing a Triangle instead of a Rectangle

 Console.WriteLine($"Area of the triangle using the adapter is

:{GetDetails(adapter)} square unit.");

 Console.ReadKey();

 }

Chapter 8 adapter pattern

153

 /*

 * The following method does not know

 * that through the adapter, it can

 * actually process a

 * Triangle instead of a Rectangle.

 */

 static double GetDetails(IRectangle rectangle)

 {

 rectangle.AboutMe();

 return rectangle.CalculateArea();

 }

 }

}

 Output
Here’s the output.

Adapter Pattern Demo

For initial verification purposes, printing the areas of both shapes.

Rectangle area is:200 Square unit

Triangle area is:100 Square unit

Now using the adapter.

True fact : Actually, I am a Triangle.

 and my area is : 100 square unit.

Using the adapter in a different way now.

Actually, I am a Triangle.

Area of the triangle using the adapter is :100 square unit.

 Analysis
Note the following code segment with comments inside the Main() method, as follows.

Chapter 8 adapter pattern

154

/*

 * The following method does not know

 * that through the adapter, it can

 * actually process a

 * Triangle instead of a Rectangle.

 */

static double GetDetails(IRectangle rectangle)

{

 rectangle.AboutMe();

 return rectangle.CalculateArea();

}

This segment is optional. I kept it to show you where you can invoke both adaptee

methods in one call.

 Types of Adapters
The GoF described two types of adapters: class adapters and object adapters.

 Object Adapters
Object adapters adapt through object composition, as shown in Figure 8-6. So, the

adapter discussed so far is an example of an object adapter.

Figure 8-6. Object adapter

Chapter 8 adapter pattern

155

In our example, RectangleAdapter is the adapter that implements IRectangle

(Target interface). ITriangle is the Adaptee interface. The adapter holds the

adaptee instance.

 Class Adapters
Class adapters adapt through subclassing and support multiple inheritance. But you

know that in C#, multiple inheritance through classes is not supported. (You need

interfaces to implement the concept of multiple inheritance.)

Figure 8-7 shows the typical class diagram for class adapters, which support multiple

inheritance.

 Q&A Session
8.1 How do you implement a class adapter design pattern in C#?
You can subclass an existing class and implement the desired interface.

Demonstration 2 shows you a complete example with output.

 Demonstration 2
This demonstration shows a class adapter. To make the example short and simple, I

made the IRectangle and ITriangle interfaces with only one method. IRectangle has

only the AboutMe() method, and the Rectangle class implements the IRectangle

interface, and thus the following hierarchy is formed.

Figure 8-7. Class adapter

Chapter 8 adapter pattern

156

interface IRectangle

 {

 void AboutMe();

 }

 class Rectangle : IRectangle

 {

 public void AboutMe()

 {

 Console.WriteLine("Actually, I am a Rectangle");

 }

 }

ITriangle has the AboutTriangle() method. The Triangle class implements this

interface, and the following hierarchy is formed.

interface ITriangle

 {

 void AboutTriangle();

 }

 class Triangle : ITriangle

 {

 public void AboutTriangle()

 {

 Console.WriteLine("Actually, I am a Triangle");

 }

 }

Now comes our class adapter, which uses the concept of multiple inheritance

using a concrete class and an interface. The attached comments help you better

understand the code.

 /*

 * RectangleAdapter is implementing IRectangle.

 * So, it needs to implement all the methods

 * defined in the target interface.

 */

 class RectangleAdapter : Triangle, IRectangle

Chapter 8 adapter pattern

157

 {

 public void AboutMe()

 {

 // Invoking the adaptee method

 AboutTriangle();

 }

 }

Now you can go through the complete demonstration, which is as follows.

using System;

namespace AdapterPatternAlternativeImplementationDemo

{

 interface IRectangle

 {

 void AboutMe();

 }

 class Rectangle : IRectangle

 {

 public void AboutMe()

 {

 Console.WriteLine("Actually, I am a Rectangle");

 }

 }

 interface ITriangle

 {

 void AboutTriangle();

 }

 class Triangle : ITriangle

 {

 public void AboutTriangle()

 {

 Console.WriteLine("Actually, I am a Triangle");

 }

 }

Chapter 8 adapter pattern

158

 /*

 * RectangleAdapter is implementing IRectangle.

 * So, it needs to implement all the methods

 * defined in the target interface.

 */

 class RectangleAdapter : Triangle, IRectangle

 {

 public void AboutMe()

 {

 // Invoking the adaptee method

 AboutTriangle();

 }

 }

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Adapter Pattern Alternative

Implementation Technique Demo.***\n");

 IRectangle rectangle = new Rectangle();

 Console.WriteLine("For initial verification purposes, printing

the details from of both shapes.");

 Console.WriteLine("The rectangle.AboutMe() says:");

 rectangle.AboutMe();

 ITriangle triangle = new Triangle();

 Console.WriteLine("The triangle.AboutTriangle() says:");

 triangle.AboutTriangle();

 Console.WriteLine("\nNow using the adapter.");

 IRectangle adapter = new RectangleAdapter();

 Console.Write("True fact : ");

 adapter.AboutMe();

 }

 }

}

Chapter 8 adapter pattern

159

 Output
Here is the output.

Adapter Pattern Alternative Implementation Technique Demo.

For initial verification purposes, printing the details from of both shapes.

The rectangle.AboutTriangle() says:

Actually, I am a Rectangle.

The triangle.AboutTriangle() says:

Actually, I am a Triangle.

Now using the adapter.

True fact : Actually, I am a Triangle.

 Analysis
This approach may not be suitable in all scenarios. For example, you may need to adapt

a method that is not specified in a C# interface. In those cases, object adapters are better.

 Q&A Session
8.2 Which do you prefer—class adapters or object adapters?
In most cases, I prefer compositions over inheritance. Object adapters use

compositions and are more flexible. In many cases, it is challenging to implement a true

class adapter when you need to adapt a specific method from adaptee interface, but

there is no close match for that in the target interface. Apart from this, if the adaptee class

(Triangle in our example) is sealed, then you cannot inherit from it.

8.3 You said, “…it is challenging to implement a true class adapter when you
need to adapt a specific method from an adaptee interface, but there is no close
match for that in the target interface.” Can you please elaborate?

In my examples, the target interface methods and adaptee interface methods were

similar. For example, in IRectangle, there is AboutMe() method, and in ITriangle, there

is the AboutTriangle() method. What do they do? They state whether it is a rectangle or

a triangle.

Chapter 8 adapter pattern

160

Now suppose that there is no such method called AboutMe() in IRectangle, but

AboutTriangle() still exists in ITriangle. So, in a case like this, if you need to adapt

the AboutTriangle() method, you need to analyze how to proceed. In our example,

AboutTriangle() is a simple method, but in real-world programming, the method is

much more complex, and there can be dependency associated with it. So, when you do

not have a corresponding target method, you may find challenges to adapt the method

from an adaptee.

8.4 I understand that clients should not know that they are using adapters.
Is this correct?

Correct. I made this implementation to show you that clients do not need to know

that their requests are translated through an adapter to the adaptee. If you want them

to show any message, you could simply add a console message in your adapter in

demonstration 2, as shown next.

class RectangleAdapter : Triangle, IRectangle

{

 public void AboutMe()

 {

 // Invoking the adaptee method

 // For Q&A

 Console.WriteLine("You are using an adapter now.");

 AboutTriangle();

 }

}

8.5 What happens if the target interface and adaptee interface method
signature differ?

Not a problem at all. If an adapter method has a few parameters, you can invoke

the adaptee method with some additional dummy parameters. In the Builder pattern

(demonstration 2 in Chapter 3), you saw optional parameters. You can use the same

concept here.

In the reverse scenario (if the adapter method has more parameters than the adaptee

method), by using those additional parameters, you can add functionality before you

transfer the call to the adaptee method.

Lastly, if the method parameters are incompatible, you may need to do casting

(if possible).

Chapter 8 adapter pattern

161

8.6 What are the drawbacks associated with this pattern?
I do not see any major challenges. I believe that an adapter’s job is simple and

straightforward, but you need to write some additional code. However, the payoff is

great, particularly for those legacy systems that cannot be changed, but you still want to

use them for their stability and simplicity.

Chapter 8 adapter pattern

163
© Vaskaran Sarcar 2020
V. Sarcar, Design Patterns in C#, https://doi.org/10.1007/978-1-4842-6062-3_9

CHAPTER 9

Facade Pattern
This chapter covers the Facade pattern.

 GoF Definition
Provide a unified interface to a set of interfaces in a subsystem. Facade defines a higher-

level interface that makes the subsystem easier to use.

 Concept
This pattern supports loose coupling. Using this pattern, you can emphasize on the

abstraction and hide the complex details by exposing a simple interface.

Consider a simple case. Let’s say that in an application, there are multiple classes,

and each of them consists of multiple methods. A client can make a product using a

combination of methods from these classes, but he needs to remember which classes to

pick and which methods to use with the calling sequence of these constructs. It’s okay,

but it makes the client’s life difficult if there are lots of variations among these products.

To overcome this, the Facade pattern is useful. It offers the client a user-friendly

interface because all the inner complexities are hidden. As a result, the client can simply

concentrate on what he needs to.

 Real-World Example
Suppose that you are going to host a birthday party with 300 guests. Nowadays, you can

hire a party organizer and let them know the key information such as the party type,

date and time of the party, the number of attendees, and so on. The organizer does the

rest for you. You do not need to think about how they decorate the party room, how they

manage the food, and so on.

https://doi.org/10.1007/978-1-4842-6062-3_9#DOI

164

Consider another example. Suppose that a customer requests a loan from a bank. In

this case, the customer is only interested in knowing whether the loan can be approved

or not; he does not care about the inner background verification processes that are

conducted at the back end.

 Computer-World Example
Think about when you use a method from a library (in the context of a programming

language). It doesn’t matter how the method is implemented in the library, you just call

the method for its easy usage. The following example makes this clearer.

 Implementation
In this example, a client can request to get different kinds of robots with his preferred

color. To serve this purpose, there are only two classes. The first one is RobotBody, which

makes the body of a robot. The second class is RobotColor, which colors the robot.

RobotBody has a parameterized constructor, and there are two methods called

MakeRobotBody and DestroyRobotBody. These methods are responsible for making

a robot and destroying a robot. I use a counter to keep track of the number of robots.

If there is no robot in the system, the destroy request is ignored. If you want, you can

ignore the counter and focus fully on the parts that describe the important aspects of this

pattern. Now let’s look at the RobotBody class.

 class RobotBody

 {

 string robotType;

 /*

 * To keep a count of number of robots.

 * This operation is optional for you.

 */

 static int count = 0;

 public RobotBody(string robotType)

 {

 this.robotType = robotType;

 }

Chapter 9 FaCade pattern

165

 public void MakeRobotBody()

 {

 Console.WriteLine($"Constructing one {robotType} robot.");

 Console.WriteLine("Robot creation finished.");

 Console.WriteLine($"Total number of robot created at this

moment={++count}");

 }

 public void DestroyRobotBody()

 {

 if (count > 0)

 {

 --count;

 Console.WriteLine("Robot's destruction process is over.");

 }

 else

 {

 Console.WriteLine("All robots are destroyed.");

 Console.WriteLine("Color removal operation will not

continue.");

 }

 }

 }

RobotColor is very easy to understand. It has a parameterized constructor and two

methods—SetColor() and RemoveColor()—to color a robot or remove the paint from

the robot. The following code segment is for RobotColor.

 public class RobotColor

 {

 string color;

 public RobotColor(string color)

 {

 this.color = color;

 }

 public void SetColor()

 {

Chapter 9 FaCade pattern

166

 if (color == "steel")

 {

 Console.WriteLine($"The default color {color} is set for

the robot.");

 }

 else

 {

 Console.WriteLine($"Painting the robot with your favourite

{color} color.");

 }

 }

 public void RemoveColor()

 {

 Console.WriteLine("Attempting to remove the colors from the

robot.");

 }

 }

Now comes the most important part. You can see that a client can make a robot

by supplying the required string argument to an object of RobotBody, invoke the

MakeRobotBody(), and then paint the robot using SetColor() of the RobotColor class.

As a result, the following lines can be used.

// Without Facade pattern

RobotBody robotBody = new RobotBody("Milano");

robotBody.MakeRobotBody();

RobotColor robotColor = new RobotColor("green");

robotColor.SetColor();

But what happens if a client has a single class called RobotFacade and makes calls

like the following?

RobotFacade facade = new RobotFacade("Milano","green");

facade.ConstructRobot();

Chapter 9 FaCade pattern

167

Or, you allow him to make calls like the following (by providing a default color)?

// Making a robonaut robot with default steel color.

facade = new RobotFacade("Robonaut");

facade.ConstructRobot();

You know the answer: the client will be happy; in these cases, he doesn’t need to

remember the steps to create a robot. For simplicity, only two classes are used in the

example, but in the real world, you may need to use a large number of classes and

methods to make a product like this. In such cases, the Facade pattern is even more

powerful. You can tell your client to use the RobotFacade class to create and destroy

robots instead of calling each class, like RobotBody and RobotColor.

Let’s look at the RobotFacade now. I composed RobotBody and RobotColor into it

and delegated the task to the corresponding component when I use ConstructRobot()

and DestroyRobot() method of this class. From now on, RobotBody and RobotColor can

be called subsystem classes in this example.

Here is the facade class.

class RobotFacade

 {

 RobotBody robotBody;

 RobotColor robotColor;

 public RobotFacade(string robotType, string color = "steel")

 {

 robotBody = new RobotBody(robotType);

 robotColor = new RobotColor(color);

 }

 public void ConstructRobot()

 {

 Console.WriteLine("Robot creation through facade starts...");

 robotBody.MakeRobotBody();

 robotColor.SetColor();

 Console.WriteLine();

 }

Chapter 9 FaCade pattern

168

 public void DestroyRobot()

 {

 Console.WriteLine("Making an attempt to destroy one robot

using the facade now.");

 robotColor.RemoveColor();

 robotBody.DestroyRobotBody();

 Console.WriteLine();

 }

 }

 Class Diagram
Figure 9-1 shows the class diagram.

Figure 9-1. Class diagram

Chapter 9 FaCade pattern

169

 Solution Explorer View
Figure 9-2 shows the high-level structure of the program. From Solution Explorer, you can

see that at a high level, I segregated the subsystem classes from the facade class and the

client code. The subsystem classes are placed inside the RobotParts folder.

Figure 9-2. Solution Explorer view

Chapter 9 FaCade pattern

170

 Demonstration
Here’s the full implementation.

// RobotBody.cs

using System;

namespace FacadePattern.RobotParts

{

 class RobotBody

 {

 string robotType;

 /*

 * To keep a count of number of robots.

 * This operation is optional for you.

 */

 static int count = 0;

 public RobotBody(string robotType)

 {

 this.robotType = robotType;

 }

 public void MakeRobotBody()

 {

 Console.WriteLine($"Constructing one {robotType} robot.");

 Console.WriteLine("Robot creation finished.");

 Console.WriteLine($"Total number of robot created at this

moment={++count}");

 }

 public void DestroyRobotBody()

 {

 if (count > 0)

 {

 --count;

 Console.WriteLine("Robot's destruction process is over.");

 }

 else

Chapter 9 FaCade pattern

171

 {

 Console.WriteLine("All robots are destroyed.");

 Console.WriteLine("Color removal operation will not

continue.");

 }

 }

 }

}

// RobotColor.cs

using System;

namespace FacadePattern.RobotParts

{

 public class RobotColor

 {

 string color;

 public RobotColor(string color)

 {

 this.color = color;

 }

 public void SetColor()

 {

 if (color == "steel")

 {

 Console.WriteLine($"The default color {color} is set for

the robot.");

 }

 else

 {

 Console.WriteLine($"Painting the robot with your favourite

{color} color.");

 }

 }

 public void RemoveColor()

 {

Chapter 9 FaCade pattern

172

 Console.WriteLine("Attempting to remove the colors from the

robot.");

 }

 }

}

 // RobotFacade.cs

using System;

namespace FacadePattern.RobotParts

{

 class RobotFacade

 {

 RobotBody robotBody;

 RobotColor robotColor;

 public RobotFacade(string robotType, string color = "steel")

 {

 robotBody = new RobotBody(robotType);

 robotColor = new RobotColor(color);

 }

 public void ConstructRobot()

 {

 Console.WriteLine("Robot creation through facade starts...");

 robotBody.MakeRobotBody();

 robotColor.SetColor();

 Console.WriteLine();

 }

 public void DestroyRobot()

 {

 Console.WriteLine("Making an attempt to destroy one robot using

the facade now.");

 robotColor.RemoveColor();

 robotBody.DestroyRobotBody();

 Console.WriteLine();

 }

Chapter 9 FaCade pattern

173

 }

}

 // Program.cs

using System;

using FacadePattern.RobotParts;

namespace FacadePattern

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Facade Pattern Demo.***\n");

 // Making a Milano robot with green color.

 RobotFacade facade = new RobotFacade("Milano","green");

 facade.ConstructRobot();

 // Making a robonaut robot with default steel color.

 facade = new RobotFacade("Robonaut");

 facade.ConstructRobot();

 // Destroying one robot

 facade.DestroyRobot();

 // Destroying another robot

 facade.DestroyRobot();

 // This destrcution attempt should fail.

 facade.DestroyRobot();

 Console.ReadLine();

 }

 }

}

Chapter 9 FaCade pattern

174

 Output
Here’s the output.

Facade Pattern Demo.

Robot creation through facade starts...

Constructing one Milano robot.

Robot creation finished.

Total number of robot created at this moment=1

Painting the robot with your favourite green color.

Robot creation through facade starts...

Constructing one Robonaut robot.

Robot creation finished.

Total number of robot created at this moment=2

The default color steel is set for the robot.

Making an attempt to destroy one robot using the facade now.

Attempting to remove the colors from the robot.

Robot's destruction process is over.

Making an attempt to destroy one robot using the facade now.

Attempting to remove the colors from the robot.

Robot's destruction process is over.

Making an attempt to destroy one robot using the facade now.

Attempting to remove the colors from the robot.

All robots are destroyed.

Color removal operation will not continue.

Chapter 9 FaCade pattern

175

 Q&A Session
9.1 What are the key advantages of using the Facade pattern?
Here are some advantages.

• If your system consists of many subsystems, managing those

subsystems becomes tough, and clients find it difficult to

communicate separately with each of these subsystems. In this

scenario, Facade patterns are handy. Instead of presenting complex

subsystems, you present one simplified interface to clients. This

approach also supports weak coupling by separating the client code

from the subsystems.

• It can also help reduce the number of objects that a client needs to

deal with.

9.2 The facade class is using compositions in this example. Is this necessary?
Yes. With this approach, you can access the intended methods in each subsystem. I

delegated the task to the corresponding component when I used the ConstructRobot()

and DestroyRobot() methods of this class.

9.3 Can you now access each of the subsystems directly?
Yes, you can. The Facade pattern does not restrict you from doing this. I showed you

this before I introduced the facade class. But in that case, the code may look dirty, and

you may lose the benefits associated with the Facade pattern. In this context, you can

note that since the client can directly access the subsystem, it is called a transparent

facade. But when you restrict that usage and force them to create robots only through

RobotFacade, you can call the facade as an opaque facade.

9.4 How is Facade different from the Adapter design pattern?
In the Adapter pattern, you are trying to alter an interface so that your clients do not

see any difference between the interfaces. By contrast, the Facade pattern simplifies

the interface. It presents the client with a simple interface to interact with (instead of a

complex subsystem).

9.5 There should be only one facade for a complex subsystem. Is this correct?
Not at all. You can create any number of facades for a specific subsystem.

Chapter 9 FaCade pattern

176

9.6 Can you add new things or additional code with a facade?
Yes, you can. You saw that I used the following line inside ConstructRobot() of the

RobotFacade class before I delegated the call to actual components.

Console.WriteLine("Robot creation through facade starts...");

In the same way, DestroyRobot() has the following line before it tries to destroy a

robot.

Console.WriteLine("Making an attempt to destroy one robot using the facade

now.");

9.7 What are the challenges associated with the Facade pattern?
Here are some challenges.

• Subsystems are connected to the facade layer. So, you need to take

care of an additional layer of coding (increasing your codebase).

• When the internal structure of a subsystem changes, you need to

incorporate the changes in the facade layer also.

• Some developers may need to learn about this new layer, but some of

them know how to use the subsystems/APIs efficiently.

9.8 Can I make the facade class static?
In many examples, there is only one facade, and you may not need to initialize the

facade class. In those cases, it makes sense if you make the facade class static.

Chapter 9 FaCade pattern

177
© Vaskaran Sarcar 2020
V. Sarcar, Design Patterns in C#, https://doi.org/10.1007/978-1-4842-6062-3_10

CHAPTER 10

Flyweight Pattern
This chapter covers the Flyweight pattern.

 GoF Definition
Use sharing to support large numbers of fine-grained objects efficiently.

 Concept
This pattern may look simple, but if you do not identify the core concepts, the

implementations may appear to be complex. Let’s start with a basic but detailed

explanation before you implement this pattern.

Sometimes you need to handle lots of objects that are very similar but not exactly

the same. The constraint is that you cannot create all of them to lessen resource and

memory usage. The Flyweight pattern is made to handle these scenarios.

Now the question is how to do that? To understand this, let’s quickly revisit the

fundamentals of object-oriented programming. A class is a template or blueprint, and an

object is an instance of that. An object can have states and behaviors. For example, if you

are familiar with the game of football (or soccer, as it’s known in the United States), you can

say that Ronaldo or Beckham are objects from the Footballer class. You may notice that

they have states like “playing state” or “non-playing state.” In the playing state, they can

show different skills (or behaviors)—they can run, they can kick, they can pass the ball, and

so forth. To begin with object-oriented programming, you can ask the following questions.

• What are the possible states of my objects?

• What are the different functions (behaviors) that they can perform in

those states?

https://doi.org/10.1007/978-1-4842-6062-3_10#DOI

178

Once you get the answers to these questions, you are ready to proceed. Now come

back to the Flyweight pattern. Here your job is to identify.

• What are the states of my objects?

• Which part of these states can be changed?

Once you identify the answers, you break the states into two parts, called intrinsic

(which does not vary) and extrinsic (which can vary). Now you understand that if you

make objects with intrinsic states that can be shared among all objects. For the extrinsic

part, the user or client needs to pass the information. So, whenever you need to have

an object, you can get the object with intrinsic states, and then you can configure the

object on the fly by passing the extrinsic states. Following this technique, you can reduce

unnecessary object creations and memory usage.

Now let’s verify your knowledge in the following paragraph, which is extremely

important. Let’s look at what the GoF said about flyweights.

A flyweight is a shared object that can be used in multiple contexts simulta-
neously. The flyweight acts as an independent object in each context—it’s
indistinguishable from an instance of the object that’s not shared. Flyweights
cannot make assumptions about the context in which they operate. The key
concept here is the distinction between intrinsic and extrinsic state. The
intrinsic state is stored in the flyweight; it consists of information that’s
independent of the flyweight’s context, thereby making it sharable. The
extrinsic state depends on and varies with the flyweight’s context and, there-
fore, can’t be shared. Client objects are responsible for passing the extrinsic
state to the flyweight when it needs it.

 Real-World Example
Suppose you have a pen. You can use different ink refills to write with different colors.

So, the pen without the refill can be considered the flyweight with intrinsic data, and the

refills can be considered the extrinsic data in this example.

 Computer-World Example
Suppose that in a computer game, you have a large number of participants whose core

structures are the same, but their appearances vary (for example, they may have different

states, colors, weapons, and so on). Therefore, if you want to store all the objects with

Chapter 10 Flyweight pattern

179

all the variations/states, the memory requirement will be huge. So, instead of storing all

the objects, you can design the application in such a way that you create one of these

instances with the states that don’t vary among objects, and your client can maintain

remaining variations/states. If you can successfully implement the concept in the design

phase, then you have followed the Flyweight pattern in the application.

Consider another example. Suppose a company needs to print business cards for its

employees. In this case, what is the starting point? The business can create a common

template where the company logo, address, and so on, is already printed (intrinsic), and

later the company places a particular employee’s information (extrinsic) on a card.

Another common use of this pattern is seen in the graphical representation

of characters in a word processor or when you deal with string interning in your

application.

 Implementation
The following example shows the usage of three different types of vehicles: Car, Bus, and

FutureVehicle (I assume that it will be used in 2050). In this application, I assume that a

client may want to use a large number of objects from these classes with different colors

that they like. I also assume that the basic structure of a car (or bus, etc.) does not vary.

When a client requests a particular vehicle, the application does not create an object

from scratch, if it previously created an instance of that type of vehicle earlier; instead,

it’ll prepare the existing one (without color) to serve his needs. Just before delivering the

product, it’ll paint the vehicle with the color that the client prefers. Now let’s look at the

implementation strategies.

First, you create an interface for flyweights. This interface is made to provide

common methods that accept extrinsic states of flyweights. In our example, color is

supplied by clients; so, this is treated as an extrinsic state, which is why you see the

following code segment.

/// <summary>

/// The 'Flyweight' interface

/// </summary>

interface IVehicle

 {

Chapter 10 Flyweight pattern

180

 /*

 * Client will supply the color.

 * It is extrinsic state.

 */

 void AboutMe(string color);

 }

Most often, you see a factory that supplies the flyweights to the client. This factory

caches flyweights and provides methods to get them. In a shared flyweight object, you

add intrinsic states and implement methods, if necessary. You can have unshared

flyweights too. In those cases, you can ignore the extrinsic states which are passed by a

client.

In an upcoming example, VehicleFactory is the factory that supplies the flyweights

with intrinsic states. A Dictionary object stores the key/value pairs to store vehicles

with a specific type. Initially, there are no objects inside the factory, but once it starts

receiving requests for vehicles, it creates the vehicles and caches those for future use.

Notice that “One car is created,” “One bus is created,” and “Vehicle 2050 is created” are

supplied by the factory inside the flyweight objects during the object-creation phase.

These are intrinsic state of these vehicles and doesn’t vary across among the products.

The following code segment shows this factory class.

/// <summary>

/// The factory class for flyweights.

/// </summary>

class VehicleFactory

{

 private Dictionary<string, IVehicle> vehicles = new Dictionary<string,

IVehicle>();

 public int TotalObjectsCreated

 {

 get { return vehicles.Count; }

 }

 public IVehicle GetVehicleFromVehicleFactory(string vehicleType)

 {

 IVehicle vehicleCategory = null;

 if (vehicles.ContainsKey(vehicleType))

 {

Chapter 10 Flyweight pattern

181

 vehicleCategory = vehicles[vehicleType];

 }

 else

 {

 switch (vehicleType)

 {

 case "car":

 vehicleCategory = new Car("One car is created");

 vehicles.Add("car", vehicleCategory);

 break;

 case "bus":

 vehicleCategory = new Bus("One bus is created");

 vehicles.Add("bus", vehicleCategory);

 break;

 case "future":

 vehicleCategory = new FutureVehicle("Vehicle 2050

is created");

 vehicles.Add("future", vehicleCategory);

 break;

 default:

 throw new Exception("Vehicle Factory can give you

cars and buses only.");

 }

 }

 return vehicleCategory;

 }

 }

Let’s see a concrete flyweight class now. Here is one of these classes (others are

similar). The associated comments help you understand how the AboutMe() method

contains both the intrinsic state and the extrinsic state of the vehicle.

 /// <summary>

 /// A 'ConcreteFlyweight' class called Car

 /// </summary>

Chapter 10 Flyweight pattern

182

 class Car : IVehicle

 {

 /*

 * It is intrinsic state and

 * it is independent of flyweight context.

 * this can be shared.So, our factory method will supply

 * this value inside the flyweight object.

 */

 private string description;

 /*

 * Flyweight factory will supply this

 * inside the flyweight object.

 */

 public Car(string description)

 {

 this.description = description;

 }

 // Client will supply the color

 public void AboutMe(string color)

 {

 Console.WriteLine($"{description} with {color} color.");

 }

 }

From this code segment, you can see that the description is supplied during

the object creation process (the Flyweight factory does this), but color is supplied

by the clients. In this example, I draw colors at random using a method called

GetRandomColor(). So, inside Main(), you see the following code:

vehicle.AboutMe(GetRandomColor());

The read-only TotalObjectsCreated property counts different types of vehicles at

any given moment; it is very easy to understand the following code in the factory class.

public int TotalObjectsCreated

{

 get

Chapter 10 Flyweight pattern

183

 {

 return vehicles.Count;

 }

}

Lastly, FutureVehicle is considered an unshared flyweight in this example. So, in

this class, AboutMe(...) method ignores the string argument. As a result, it always

produces vehicles that are blue and ignores the client’s preferences.

// Client cannot choose color for FutureVehicle

//since it's unshared flyweight,ignoring client's input

 public void AboutMe(string color)

 {

 Console.WriteLine($"{description} with blue color.");

 }

 Class Diagram
Figure 10-1 shows the class diagram.

Figure 10-1. Class diagram

Chapter 10 Flyweight pattern

184

 Solution Explorer View
Figure 10-2 shows the high-level structure of the parts of the program.

 Demonstration 1
Here’s the complete implementation. Refer to the comments to help you better understand.

using System;

using System.Collections.Generic;//Dictionary is used here

namespace FlyweightPattern

{

Figure 10-2. Solution Explorer view

Chapter 10 Flyweight pattern

185

 /// <summary>

 /// The 'Flyweight' interface

 /// </summary>

 interface IVehicle

 {

 /*

 * Client will supply the color.

 * It is extrinsic state.

 */

 void AboutMe(string color);

 }

 /// <summary>

 /// A 'ConcreteFlyweight' class called Car

 /// </summary>

 class Car : IVehicle

 {

 /*

 * It is intrinsic state and

 * it is independent of flyweight context.

 * this can be shared.So, our factory method will supply

 * this value inside the flyweight object.

 */

 private string description;

 /*

 * Flyweight factory will supply this

 * inside the flyweight object.

 */

 public Car(string description)

 {

 this.description = description;

 }

 // Client will supply the color

 public void AboutMe(string color)

 {

 Console.WriteLine($"{description} with {color} color.");

 }

 }

Chapter 10 Flyweight pattern

186

 /// <summary>

 /// A 'ConcreteFlyweight' class called Bus

 /// </summary>

 class Bus : IVehicle

 {

 /*

 * It is intrinsic state and

 * it is independent of flyweight context.

 * this can be shared.So, our factory method will supply

 * this value inside the flyweight object.

 */

 private string description;

 public Bus(string description)

 {

 this.description = description;

 }

 // Client will supply the color

 public void AboutMe(string color)

 {

 Console.WriteLine($"{description} with {color} color.");

 }

 }

 /// <summary>

 /// A 'ConcreteFlyweight' class called FutureVehicle

 /// </summary>

 class FutureVehicle : IVehicle

 {

 /*

 * It is intrinsic state and

 * it is independent of flyweight context.

 * this can be shared.So, our factory method will supply

 * this value inside the flyweight object.

 */

 private string description;

 public FutureVehicle(string description)

Chapter 10 Flyweight pattern

187

 {

 this.description = description;

 }

 // Client cannot choose color for FutureVehicle

 // since it's unshared flyweight,ignoring client's input

 public void AboutMe(string color)

 {

 Console.WriteLine($"{description} with blue color.");

 }

 }

 /// <summary>

 /// The factory class for flyweights.

 /// </summary>

 class VehicleFactory

 {

 private Dictionary<string, IVehicle> vehicles = new

Dictionary<string, IVehicle>();

 /*

 * To count different types of vehicles

 * in a given moment.

 */

 public int TotalObjectsCreated

 {

 get

 {

 return vehicles.Count;

 }

 }

 public IVehicle GetVehicleFromVehicleFactory(string vehicleType)

 {

 IVehicle vehicleCategory = null;

 if (vehicles.ContainsKey(vehicleType))

 {

 vehicleCategory = vehicles[vehicleType];

 }

Chapter 10 Flyweight pattern

188

 else

 {

 switch (vehicleType)

 {

 case "car":

 vehicleCategory = new Car("One car is created");

 vehicles.Add("car", vehicleCategory);

 break;

 case "bus":

 vehicleCategory = new Bus("One bus is created");

 vehicles.Add("bus", vehicleCategory);

 break;

 case "future":

 vehicleCategory = new FutureVehicle("Vehicle 2050

is created");

 vehicles.Add("future", vehicleCategory);

 break;

 default:

 throw new Exception("Vehicle Factory can give you

cars and buses only.");

 }

 }

 return vehicleCategory;

 }

 }

 class Client

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Flyweight Pattern Demo.***\n");

 VehicleFactory vehiclefactory = new VehicleFactory();

 IVehicle vehicle;

 /*

 * Now we are trying to get the 3 cars. Note that:we need not create

additional cars if we have already created one of this category.

 */

Chapter 10 Flyweight pattern

189

 for (int i = 0; i < 3; i++)

 {

 vehicle = vehiclefactory.GetVehicleFromVehicleFactory("car");

 vehicle.AboutMe(GetRandomColor());

 }

 int numOfDistinctRobots = vehiclefactory.TotalObjectsCreated;

 Console.WriteLine($"\n Now, total numbers of distinct vehicle

object(s) is = {numOfDistinctRobots}\n");

 /*

 Here we are trying to get the 5 more buses.Note that: we need

not create additional buses if we have already created one of

this category.

 */

 for (int i = 0; i < 5; i++)

 {

 vehicle = vehiclefactory.GetVehicleFromVehicleFactory("bus");

 vehicle.AboutMe(GetRandomColor());

 }

 numOfDistinctRobots = vehiclefactory.TotalObjectsCreated;

 Console.WriteLine($"\n Now, total numbers of distinct vehicle

object(s) is = {numOfDistinctRobots}\n");

 /*

 Here we are trying to get the 2 future vehicles.Note that: we

need not create additional future vehicle if we have already

created one of this category.

 */

 for (int i = 0; i < 2; i++)

 {

 vehicle = vehiclefactory.GetVehicleFromVehicleFactory("future");

 vehicle.AboutMe(GetRandomColor());

 }

 numOfDistinctRobots = vehiclefactory.TotalObjectsCreated;

 Console.WriteLine($"\n Now, total numbers of distinct vehicle

object(s) is = {numOfDistinctRobots}\n");

Chapter 10 Flyweight pattern

190

 Console.ReadKey();

 }

 private static string GetRandomColor()

 {

 Random r = new Random();

 /*

 You can supply any number of your choice in nextInt argument.

we are simply checking the random number generated is an even

number or an odd number. And based on that we are choosing the

color. For simplicity, we'll use only two colors-red and green.

 */

 int random = r.Next(100);

 if (random % 2 == 0)

 {

 return "red";

 }

 else

 {

 return "green";

 }

 }

 }

}

 Output
The following is a possible output (because color is generated at random). It is from the

first run on my machine.

Flyweight Pattern Demo.

One car is created with green color.

One car is created with red color.

One car is created with green color.

 Now, total numbers of distinct vehicle object(s) is = 1

Chapter 10 Flyweight pattern

191

One bus is created with green color.

One bus is created with red color.

One bus is created with green color.

One bus is created with red color.

One bus is created with red color.

 Now, total numbers of distinct vehicle object(s) is = 2

Vehicle 2050 is created with blue color.

Vehicle 2050 is created with blue color.

 Now, total numbers of distinct vehicle object(s) is = 3

Here’s another probable output. It is from the second run on my machine.

Flyweight Pattern Demo.

One car is created with red color.

One car is created with red color.

One car is created with red color.

 Now, total numbers of distinct vehicle object(s) is = 1

One bus is created with red color.

One bus is created with green color.

One bus is created with red color.

One bus is created with green color.

One bus is created with red color.

 Now, total numbers of distinct vehicle object(s) is = 2

Vehicle 2050 is created with blue color.

Vehicle 2050 is created with blue color.

 Now, total numbers of distinct vehicle object(s) is = 3

Note the output varies because i chose colors randomly in this example.

Chapter 10 Flyweight pattern

192

 Analysis
The application is creating an object if and only if the object is not available at that

moment. Henceforth, it is caching the object for future reuse.

 Q&A Session
10.1 Can you highlight the key differences between a Singleton pattern and a

Flyweight pattern?
Singleton helps you to maintain at most one object that is required in the system.

In other words, once the required object is created, you cannot create more of that. You

need to reuse the existing object.

The Flyweight pattern generally concerns with heavy but similar objects (in which

the states are not the same) because they may occupy big blocks of memory. So, you try

to create a smaller set of template objects that can be configured on the fly to make these

heavy objects. These smaller and configurable objects are called flyweights. You can

reuse them in your application when you deal with many large objects. This approach

helps you reduce the consumption of big chunks of memory. Basically, flyweights make

one look like many, which is why the GoF states: “A flyweight is a shared object that can

be used in multiple contexts simultaneously. The flyweight acts as an independent object

in each context—it’s indistinguishable from an instance of the object that’s not shared.”

Figure 10-3 shows you how to visualize the core concepts of the Flyweight pattern

before using flyweights.

Figure 10-3. Before using flyweights

Chapter 10 Flyweight pattern

193

Figure 10-4 shows the design after using flyweights.

So, from Figure 10-4, you can see Heavy-Object1 is created when we apply

Configuration-1 to the Flyweight Object, and similarly, Heavy-Object2 is created when

we apply Configuration-2 to the Flyweight Object. You can see that instance-specific

contents (like color in our demonstration 1) can be passed to the flyweights to make

these heavy objects. In this example, the flyweight object is acting like a common

template that can be configured as needed.

10.2 What is the impact of multithreading?
If you are creating objects with a new operator, in a multithreaded environment, you

may end up creating multiple unwanted objects. This is similar to the Singleton pattern,

and the remedy is also similar.

10.3 What are the advantages of using the Flyweight design pattern?
Here are some advantages.

• You can reduce memory consumptions of heavy objects that can be

controlled identically.

• You can reduce the total number of objects in the system.

• You can maintain centralized states of many “virtual” objects.

Figure 10-4. After using flyweights

Chapter 10 Flyweight pattern

194

10.4 What are the challenges associated with using the Flyweight design
pattern?

Here are some challenges.

• In this pattern, you need to spend some time to configure these

flyweights. These configuration times can impact the overall

performance of the application.

• To create flyweights, you are extracting a common template class

from existing objects. This additional layer of programming can be

tricky and sometimes hard to debug and maintain.

10.5 Can you have a nonshareable flyweight interface?
Yes, a flyweight interface does not enforce that it needs to be shareable always. So,

in some cases, you may have nonshareable flyweights with concrete flyweight objects as

children. In demonstration 1, FutureVehicle is made for that. You can see that it always

consists of a blue color, and for this vehicle, it doesn’t matter whatever color (red or

green) a client supply to it as an extrinsic state.

10.6 Since the intrinsic data of flyweights is the same, you can try to share them.
Is this correct?

Yes. Notice that “One car is created,” “One bus is created,” and “Vehicle 2050 is

created,” are supplied by the factory inside the flyweights during the flyweight (with the

intrinsic state) object creation phase.

10.7 How do clients handle these flyweights’ extrinsic data?
They need to pass that information (the states) to the flyweights when they need to

use this concept.

10.8 Extrinsic data is not shareable. Is this correct?
Yes. It’s very important to understand this pattern before you implement it.

10.9 What is the role of VehicleFactory in this implementation?
It caches flyweights and provides a method to get them. In this example, there are

multiple objects with an intrinsic state that can be shared. So, storing them in a central

place is always a good idea.

10.10 Can I implement the factory class as a singleton?
Yes, you can. In fact, in many applications, you may see this. Demonstration 2

describes it.

Chapter 10 Flyweight pattern

195

 Demonstration 2
In this example, the VehicleFactory factory class is implemented as a singleton. So, you

can replace the factory class in demonstration 1 with the following code.

/// <summary>

/// The factory class for flyweights implemented as singleton.

/// </summary>

class VehicleFactory

{

 private static readonly VehicleFactory Instance = new VehicleFactory();

 private Dictionary<string, IVehicle> vehicles = new

Dictionary<string, IVehicle>();

 private VehicleFactory()

 {

 vehicles.Add("car", new Car("One car is created"));

 vehicles.Add("bus", new Bus("One bus is created"));

 vehicles.Add("future", new FutureVehicle("Vehicle 2050 is created"));

 }

 public static VehicleFactory GetInstance

 {

 get

 {

 return Instance;

 }

 }

 /*

 * To count different types of vehicles

 * in a given moment.

 */

 public int TotalObjectsCreated

 {

 get

 {

Chapter 10 Flyweight pattern

196

 return vehicles.Count;

 }

 }

 public IVehicle GetVehicleFromVehicleFactory(string vehicleType)

 {

 IVehicle vehicleCategory = null;

 if (vehicles.ContainsKey(vehicleType))

 {

 vehicleCategory = vehicles[vehicleType];

 return vehicleCategory;

 }

 else

 {

 throw new Exception("Currently, the vehicle factory can have

cars and buses only.");

 }

 }

 }

And now, inside the client code, instead of using the following line (which is

commented out), you need to use a new line of code to adapt the previous changes.

//VehicleFactory vehiclefactory = new VehicleFactory();

VehicleFactory vehiclefactory = VehicleFactory.GetInstance;

 Output
When you run the application using these new code segments, you may get (because the

color is generated at random) output like the following.

Flyweight Pattern Demo.

One car is created with red color.

One car is created with red color.

One car is created with red color.

Chapter 10 Flyweight pattern

197

 Now, total numbers of distinct vehicle object(s) is = 3

One bus is created with green color.

One bus is created with green color.

One bus is created with green color.

One bus is created with red color.

One bus is created with red color.

 Now, total numbers of distinct vehicle object(s) is = 3

Vehicle 2050 is created with blue color.

Vehicle 2050 is created with blue color.

 Now, total numbers of distinct vehicle object(s) is = 3

 Analysis
Notice that in this implementation, I initialized all different types of vehicles at the

beginning, inside the constructor. As a result, I started with three distinct vehicle

objects at the beginning. So, if I do not need any bus, car, or Vehicle2050, I waste the

memory for the objects. On the contrary, in demonstration 1, if any of these objects is

not available, the factory class creates it and caches it for future use. So, my vote is for

demonstration 1 unless you modify demonstration 2, keeping this potential drawback in

mind. In short, whenever you use this pattern, you create an object, fill in all the required

state information and give it to your client. Each time a client requests an object,

your application should check whether it can reuse an existing object (with required

states filled) or not; thus reducing unnecessary object creations and save memory

consumption.

Microsoft says that the Intern method uses the intern pool to search for a string

equal to the value of a string. If such a string exists, its reference in the intern pool is

returned; otherwise, a reference to the string is added to the intern pool, then that

reference is returned. In .NET Core 3.1, when I execute the following segment of code,

firstString and thirdString both refer to the same string. As a result, the final line of

this code segment returns True, which is not the case when you compare firstString

with secondString because they refer to different objects.

#region test for in-built flyweight pattern

string firstString = "A simple string";

Chapter 10 Flyweight pattern

https://docs.microsoft.com/en-us/dotnet/api/system.string.intern?view=netframework-4.8

198

string secondString = new StringBuilder().Append("A").Append(" simple").

Append(" string").ToString();

string thirdString = String.Intern(secondString);

// Different references.

Console.WriteLine((Object)secondString == (Object)firstString);

// Same reference.

Console.WriteLine((Object)thirdString == (Object)firstString);

#endregion

So, you can say that the Intern method in .NET Core 3.1 follows the Flyweight pattern.

Chapter 10 Flyweight pattern

199
© Vaskaran Sarcar 2020
V. Sarcar, Design Patterns in C#, https://doi.org/10.1007/978-1-4842-6062-3_11

CHAPTER 11

Composite Pattern
This chapter covers the Composite pattern.

 GoF Definition
Compose objects into tree structures to represent part-whole hierarchies. Composite lets

clients treat individual objects and compositions of objects uniformly.

 Concept
Consider a shop that sells different kinds of dry fruit, such as cashews, dates, and

walnuts. Each of these items has a certain price. Let’s assume that you can purchase any

of these individual items, or you can purchase “gift packs” (or boxed items), which are

composed of different dry fruit items. In this case, the cost of a packet is the sum of its

component parts. The Composite pattern is useful in a similar situation, in which you

treat both the individual parts and the combination of the parts in the same way so that

you can process them uniformly.

This pattern is useful to represent part-whole hierarchies of objects. In object-

oriented programming, a composite is an object with a composition of one or more

similar objects, where each of these objects has similar functionality. (This is also known

as a “has-a” relationship among objects.) The usage of this pattern is common in tree-

structured data, and when you implement this pattern in such a data structure, you do

not need to discriminate between a branch and the leaf nodes of the tree. As a result, you

can achieve these two key goals using this pattern.

https://doi.org/10.1007/978-1-4842-6062-3_11#DOI

200

• You can compose objects into a tree structure to represent a part-

whole hierarchy.

• You can access both the composite objects (branches) and the

individual objects (leaf nodes) uniformly. As a result, you can reduce

the complexity of the code and make the application less prone to

errors.

 Real-World Example
Apart from our previous example, you can also think of an organization that consists

of many departments. In general, an organization has many employees. Some of these

employees are grouped to form a department, and those departments can be further

grouped to build the high-level structure of the organization.

 Computer-World Example
I mentioned that a tree data structure could follow this concept where the clients can

treat the leaves of the tree and the nonleaves (or branches of the tree) in the same way.

So, when you see a hierarchical data, you can get a clue that the Composite pattern can

be useful. XML files are very common examples with such tree structures.

Note When you traverse the tree, you often use the concept of an Iterator design
pattern, which is covered in Chapter 18.

 Implementation
In this example, I represent a college organization. Let’s assume there is a principal and

two heads of departments (HODs), one for Computer Science and Engineering (CSE),

and one for Mathematics (Math). Suppose that in the Mathematics department, there

are currently two lecturers (or teachers), and in the Computer Science and Engineering

department, there are three lecturers (teachers). The tree structure for this organization

looks like Figure 11-1.

Chapter 11 ComposIte pattern

201

Let’s also assume that at the end of the year, one lecturer from the CSE department

submits his resignation. The following example considers all the scenarios mentioned.

Class Diagram
Figure 11-2 shows the class diagram.

Figure 11-1. A college organization with a principal, 2 HODs and 5 lecturers/ teachers

Figure 11-2. Class diagram

Chapter 11 ComposIte pattern

202

 Solution Explorer View
Figure 11-3 shows the high-level structure of the program.

Figure 11-3. Solution Explorer view

Chapter 11 ComposIte pattern

203

 Demonstration
This demonstration features a tree structure. IEmployee is an interface with three read- write

properties and one method called DisplayDetails(). It looks like the following.

interface IEmployee

 {

 // To set an employee name

 string Name { get; set; }

 // To set an employee department

 string Dept { get; set; }

 // To set an employee designation

 string Designation { get; set; }

 // To display an employee details

 void DisplayDetails();

 }

From the associated comments, it’s easy to understand that these three properties

set an employee’s name, their corresponding department, and the designation. The

Employee and CompositeEmployee concrete classes implement this interface. Employee

class (lecturers) acts as a leaf node, and the other one is a nonleaf node. One or more

employees can report to a HOD. So, it is treated as a nonleaf (or branch) node. Similarly,

all HODs report to the principal. So, Principal is another nonleaf node.

The mathematics lecturers are named M. Joy and M. Roony. The CSE teachers are

named C. Sam, C. Jones, and C. Marium. These lecturers do not supervise anyone, so

they are treated as leaf nodes.

The CompositeEmployee class maintains a list and two additional methods called

AddEmployee(...) and RemoveEmployee(...). These methods add an employee to the

list or remove an employee from the list.

Now go through the complete implementation, and refer to the supportive comments.

using System;

/* For List<Employee> using

 * the following namespace.

 */

using System.Collections.Generic;

Chapter 11 ComposIte pattern

204

namespace CompositePattern

{

 interface IEmployee

 {

 // To set an employee name

 string Name { get; set; }

 // To set an employee department

 string Dept { get; set; }

 // To set an employee designation

 string Designation { get; set; }

 // To display an employee details

 void DisplayDetails();

 }

 // Leaf node

 class Employee : IEmployee

 {

 public string Name { get; set; }

 public string Dept { get; set; }

 public string Designation { get; set; }

 // Details of a leaf node

 public void DisplayDetails()

 {

 Console.WriteLine($"\t{Name} works in { Dept} department.

Designation:{Designation}");

 }

 }

 // Non-leaf node

 class CompositeEmployee : IEmployee

 {

 public string Name { get; set; }

 public string Dept { get; set; }

 public string Designation { get; set; }

 // The container for child objects

 private List<IEmployee> subordinateList = new List<IEmployee>();

Chapter 11 ComposIte pattern

205

 // To add an employee

 public void AddEmployee(IEmployee e)

 {

 subordinateList.Add(e);

 }

 // To remove an employee

 public void RemoveEmployee(IEmployee e)

 {

 subordinateList.Remove(e);

 }

 // Details of a composite node

 public void DisplayDetails()

 {

 Console.WriteLine($"\n{Name} works in {Dept} department.

Designation:{Designation}");

 foreach (IEmployee e in subordinateList)

 {

 e.DisplayDetails();

 }

 }

 }

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Composite Pattern Demo. ***");

 #region Mathematics department

 // 2 lecturers work in Mathematics department

 Employee mathTeacher1 = new Employee { Name = "M.Joy", Dept =

"Mathematic", Designation = "Lecturer" };

 Employee mathTeacher2 = new Employee { Name = "M.Roony", Dept =

"Mathematics", Designation = "Lecturer" };

 // The college has a Head of Department in Mathematics

Chapter 11 ComposIte pattern

206

 CompositeEmployee hodMaths = new CompositeEmployee { Name =

"Mrs.S.Das", Dept = "Maths", Designation = "HOD-Maths" };

 // Lecturers of Mathematics directly reports to HOD-Maths

 hodMaths.AddEmployee(mathTeacher1);

 hodMaths.AddEmployee(mathTeacher2);

 #endregion

 #region Computer Science department

 // 3 lecturers work in Computer Sc. department

 Employee cseTeacher1 = new Employee { Name = "C.Sam", Dept =

"Computer Science", Designation = "Lecturer" };

 Employee cseTeacher2 = new Employee { Name = "C.Jones", Dept =

"Computer Science.", Designation = "Lecturer" };

 Employee cseTeacher3 = new Employee { Name = "C.Marium", Dept =

"Computer Science", Designation = "Lecturer" };

 // The college has a Head of Department in Computer science

 CompositeEmployee hodCompSc = new CompositeEmployee { Name = "Mr.

V.Sarcar", Dept = "Computer Sc.", Designation = "HOD-Computer Sc." };

 /* Lecturers of Computer Sc. directly reports to HOD-CSE */

 hodCompSc.AddEmployee(cseTeacher1);

 hodCompSc.AddEmployee(cseTeacher2);

 hodCompSc.AddEmployee(cseTeacher3);

 #endregion

 #region Top level management

 // The college also has a Principal

 CompositeEmployee principal = new CompositeEmployee { Name =

"Dr.S.Som", Dept = "Planning-Supervising-Managing", Designation =

"Principal" };

 /* Head of Departments's of Maths and Computer Science directly

reports to Principal.*/

 principal.AddEmployee(hodMaths);

 principal.AddEmployee(hodCompSc);

 #endregion

Chapter 11 ComposIte pattern

207

 /*

 * Printing the leaf-nodes and branches in the same way. i.e.

in each case, we are calling DisplayDetails() method.

 */

 Console.WriteLine("\nDetails of a Principal object is as follows:");

 // Prints the complete structure

 principal.DisplayDetails();

 Console.WriteLine("\nDetails of a HOD object is as follows:");

 /* Prints the details of Computer Science department */

 hodCompSc.DisplayDetails();

 // Leaf node

 Console.WriteLine("\nDetails of an individual employee(leaf

node) is as follows:");

 mathTeacher1.DisplayDetails();

 /*

 * Suppose, one Computer Science lecturer(C.Jones)

 * is leaving now from the organization.

 */

 hodCompSc.RemoveEmployee(cseTeacher2);

 Console.WriteLine("\nAfter the resignation of C.Jones, the

organization has the following members:");

 principal.DisplayDetails();

 // Wait for user

 Console.ReadKey();

 }

 }

}

Chapter 11 ComposIte pattern

208

 Output
Here’s the output.

***Composite Pattern Demo. ***

Details of a Principal object is as follows:

Dr. S.Som works in Planning-Supervising-Managing department.

Designation:Principal

Mrs. S.Das works in Maths department.Designation:HOD-Maths

 M.Joy works in Mathematic department.Designation:Lecturer

 M.Roony works in Mathematics department.Designation:Lecturer

Mr. V.Sarcar works in Computer Sc. department.Designation:HOD-Computer Sc.

 C.Sam works in Computer Science department.Designation:Lecturer

 C.Jones works in Computer Science. department.Designation:Lecturer

 C.Marium works in Computer Science department.Designation:Lecturer

Details of a HOD object is as follows:

Mr. V.Sarcar works in Computer Sc. department.Designation:HOD-Computer Sc.

 C.Sam works in Computer Science department.Designation:Lecturer

 C.Jones works in Computer Science. department.Designation:Lecturer

 C.Marium works in Computer Science department.Designation:Lecturer

Details of an individual employee(leaf node) is as follows:

 M.Joy works in Mathematic department.Designation:Lecturer

After the resignation of C.Jones, the organization has the following members:

Dr. S.Som works in Planning-Supervising-Managing department.

Designation:Principal

Mrs. S.Das works in Maths department.Designation:HOD-Maths

 M.Joy works in Mathematic department.Designation:Lecturer

 M.Roony works in Mathematics department.Designation:Lecturer

Mr. V.Sarcar works in Computer Sc. department.Designation:HOD-Computer Sc.

 C.Sam works in Computer Science department.Designation:Lecturer

 C.Marium works in Computer Science department.Designation:Lecturer

Chapter 11 ComposIte pattern

209

 Q&A Session
11.1 What are the advantages of using the Composite design pattern?
Here are some of the advantages.

• In a tree-like structure, you can treat both the composite objects

(branch nodes) and the individual objects (leaf nodes) uniformly.

In this example, I used a common method called DisplayDetails

to print both the composite object structure (the principal or

department heads) and the single objects (the lecturers).

• It is common to implement a part-whole hierarchy using this design

pattern.

• You can easily add a new component to the architecture or delete an

existing component from the architecture.

11.2 What are the challenges associated with using the Composite design
pattern?

Here are some of the disadvantages.

• If you want to maintain the ordering of child nodes (for example, if

the parse trees are represented as components), you may need to

take special care.

• If you are dealing with immutable objects, you cannot delete them.

• You can easily add a new component, but maintenance can be

difficult over a period of time. Sometimes you may want to deal with

a composite that has special components. This kind of constraint

may cause additional costs to the development because you may

need to implement a dynamic checking mechanism to support the

concept.

11.3 In this example, you used a list data structure. Are other data structures OK
to use?

Absolutely. There is no universal rule. You are free to use your preferred data

structure. The GoF also confirmed that it is not necessary to use a general-purpose data

structure.

Chapter 11 ComposIte pattern

210

11.4 How do you connect the Iterator design pattern to a Composite design
pattern?

In the example, if you want to examine a composite object architecture, you may

need to iterate over the objects. Also, if you want to do some special activities with some

branches, you may need to iterate over its leaf nodes and non-leaf nodes.

11.5 In your implementation, in the interface, you defined only one method,
DisplayDetails. But you are using additional methods for the addition and removal
of objects in the composite class (CompositeEmployee). Why are you not putting these
methods in the interface?

Nice observation. Even the GoF discussed this. Let’s see what happens if you put the

AddEmployee(...) and RemoveEmployee(...) methods in the interface. In that case,

the leaf nodes need to implement these addition and removal operations. But will it

be meaningful in this case? The answer is no. In this case, it may appear that you lose

transparency, but I believe that you have more safety because I blocked the meaningless

operations in the leaf nodes. This is why the GoF mentioned that this kind of decision

involves a trade-off between safety and transparency.

11.6 I want to use an abstract class instead of an interface. Is this allowed?
In most cases, the simple answer is yes, but you need to understand the difference

between an abstract class and an interface. In a typical scenario, you may find that one

of them is more useful than the other. Throughout the book, I present only simple and

easy-to-understand examples, so you may not see much difference between them.

Note In the “Q&a session” section in Chapter 3, which covered the Builder
pattern, I discussed how to decide between an abstract class and an interface.

Chapter 11 ComposIte pattern

211
© Vaskaran Sarcar 2020
V. Sarcar, Design Patterns in C#, https://doi.org/10.1007/978-1-4842-6062-3_12

CHAPTER 12

Bridge Pattern
This chapter covers the Bridge pattern.

 GoF Definition
Decouple an abstraction from its implementation so that the two can vary

independently.

 Concept
This pattern is also known as the Handle/Body pattern. Using it, you decouple an

implementation class from an abstract class by providing a bridge between them.

This bridge interface makes the functionality of concrete classes independent from

the interface implementer classes. You can alter different kinds of classes structurally

without affecting each other. This pattern initially may seem to be complicated, which

is why, in this chapter, there are two different implementations with a lot of explanation.

The concept will be clearer to you when you go through the examples.

 Real-World Example
In a software product development company, the development team and the marketing

team both play crucial roles. The marketing team does a market survey and gathers

customer requirements. The development team implements those requirements in the

product to fulfill customer needs. Any change (e.g., in operational strategy) in one team

should not have a direct impact on the other team. In this case, the marketing team is

playing the role of a bridge between the clients of the product and the development team

of the software company.

https://doi.org/10.1007/978-1-4842-6062-3_12#DOI

212

 Computer-World Example
GUI frameworks can use the Bridge pattern to separate abstractions from the platform-

specific implementation. For example, using this pattern, you can separate a window

abstraction from a window implementation for Linux or macOS.

 Implementation
Suppose that you need to design a piece of software for a seller who can sell different

electronic items. For simplicity, let’s assume, the seller is currently selling televisions and

DVD players, and he sells them both online and offline (at different showrooms) mode.

In this case, you may start with the designs shown in Figure 12-1 or Figure 12-2.

Figure 12-1. Approach 1

Chapter 12 Bridge pattern

213

On further analysis, you discover that approach 1 is messy and will be difficult to

maintain.

At first, approach 2 looks cleaner, but if you want to include new prices (e.g.,

ThirdPartyPrice, FestiveTimePrice, etc.), or if you want to include new electronic

items (e.g., air conditioners (AC), refrigerators, etc.), you face new challenges because

the elements are tightly coupled in this design. But in a real-world scenario, this kind of

enhancement is often required.

So, you need to start with a loosely coupled system for future enhancements,

so that either of these two hierarchies (electronics items and their prices) can grow

independently. The Bridge pattern is perfect for such a scenario. So, when you use the

Bridge pattern, the structure may look like Figure 12-3.

Figure 12-2. Approach 2

Figure 12-3. Maintaining two separate hierarchies using the Bridge pattern

Now let’s start from the most common class diagram of a Bridge pattern (see

Figure 12-4).

Chapter 12 Bridge pattern

214

In this class diagram,

• Abstraction defines the abstract interface and maintains the

Implementor reference. In my examples, it is an abstract class, but it

is very important to note that you should not assume that you need

an abstract class or interface to define an abstraction. It’s important

to know what the word abstraction here says about the methods that

remove the complexity. These methods simply hide the inner details

of their work from the client code.

• RefinedAbstraction (a concrete class) extends the interface defined

by Abstraction. It is the one that the client uses in demonstration 1.

• Implementor defines the interface for implementation classes. This

interface methods don’t have to correspond to abstraction methods

exactly. Typically, it includes primitive operations, and abstraction

defines the high-level operation based on these primitives. Also note

that there does not need to be a one-to-one mapping between an

abstraction class method and an implementor method. You can use a

combination of the implementor method inside an abstraction class

method. Demonstration 2 shows this, or you can refer to Q&A 12.5.

• ConcreteImplementor (a concrete class) implements the

Implementor interface.

Figure 12-4. A classical Bridge pattern

Chapter 12 Bridge pattern

215

I follow a similar design in the upcoming demonstrations. For your reference, I point

out all the participants in the implementation with comments.

 Class Diagram
Figure 12-5 shows the class diagram.

Figure 12-5. Class diagram

 Solution Explorer View
Figure 12-6 shows the high-level structure of the program.

Chapter 12 Bridge pattern

216

 Demonstration 1
In this example, ElectronicGoods is our abstraction class. It is placed in hierarchy 1.

This class is defined as follows.

// Abstraction

 public abstract class ElectronicGoods

 {

 public IPrice Price { get; set; }

 public string ProductType { get; set; }

 public abstract void Details();

 }

Figure 12-6. Solution Explorer view

Chapter 12 Bridge pattern

217

The IPrice interface is our implementor interface. It maintains the second hierarchy

and is defined as follows.

// Implementor

 public interface IPrice

 {

 void DisplayDetails(string product);

 }

Television is the concrete abstraction class that overrides the Details() method

as follows.

// Refined Abstraction

 public class Television : ElectronicGoods

 {

 /*

 * Implementation specific:

 * Delegating the task

 * to the Implementor object.

 */

 public override void Details()

 {

 Price.DisplayDetails(ProductType);

 }

 }

With the supporting comments, you can see that inside the Details() method, I

invoke the DisplayDetails() method from the other hierarchy and pass the information

about the product type.

The concrete implementors (OnlinePrice, ShowroomPrice) catch this information

and use it in DisplayDetails(...). Both concrete implementors are similar. For your

reference, one of them is shown next.

 // This is ConcreteImplementor-1

 // OnlinePrice class

 public class OnlinePrice : IPrice

Chapter 12 Bridge pattern

218

 {

 public void DisplayDetails(string productType)

 {

 Console.Write($"\n{productType} price at online is : 2000$");

 }

 }

For simplicity, I did not vary the price in demonstration 1, but in demonstration 2,

you notice the flexibility of using this pattern, and there I also vary the price. Now go

through the complete demonstration, which is as follows.

using System;

namespace BridgePattern

{

 // Abstraction

 public abstract class ElectronicGoods

 {

 public IPrice Price { get; set; }

 public string ProductType { get; set; }

 public abstract void Details();

 }

 // Refined Abstraction

 public class Television : ElectronicGoods

 {

 /*

 * Implementation specific:

 * Delegating the task

 * to the Implementor object.

 */

 public override void Details()

 {

 Price.DisplayDetails(ProductType);

 }

 }

Chapter 12 Bridge pattern

219

 // Implementor

 public interface IPrice

 {

 void DisplayDetails(string product);

 }

 // This is ConcreteImplementor-1

 // OnlinePrice class

 public class OnlinePrice : IPrice

 {

 public void DisplayDetails(string productType)

 {

 Console.Write($"\n{productType} price at online is : 2000$");

 }

 }

 // This is ConcreteImplementor-2

 // ShowroomPrice class

 public class ShowroomPrice : IPrice

 {

 public void DisplayDetails(string productType)

 {

 Console.Write($"\n{productType} price at showroom is : 3000$");

 }

 }

 // Client code

 class Client

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Bridge Pattern Demo.***");

 Console.WriteLine("Verifying the market price of a television.");

 ElectronicGoods eItem = new Television();

 eItem.ProductType = "Sony Television";

 // Verifying online price

 IPrice price = new OnlinePrice();

 eItem.Price = price;

Chapter 12 Bridge pattern

220

 eItem.Details();

 // Verifying showroom price

 price = new ShowroomPrice();

 eItem.Price = price;

 eItem.Details();

 }

 }

}

 Output
Here’s the output.

Bridge Pattern Demo.

Verifying the market price of a television.

Sony Television price at online is : 2000$

Sony Television price at showroom is : 3000$

 Additional Implementation
I include an additional implementation in this chapter to help you note the flexibility of

using this pattern. In this example, I used constructors, not properties. But before I show

you the flexibility, let’s assume that the seller provides a discount on the products for sale.

To accommodate this, in this implementation, let’s add the following method in the

abstraction class (ElectronicGoods).

// Additional method

public void Discount(int percentage)

{

 price.GetDiscount(percentage);

}

And the following method in the implementation interface (IPrice).

void GetDiscount(int percentage);

Chapter 12 Bridge pattern

221

Since the Discount method is not abstract, the Television class or any derived class

of ElectronicGoods inherits this method. But since the GetDiscount(int percentage)

method is added in the IPrice interface, the concrete implementors need to implement

this method. The following is such an implementation from the OnlinePrice class

implementor.

public void GetDiscount(int percentage)

{

 Console.Write($"\nAt online, you can get upto {percentage}% discount.");

}

Note again, these modifications are made to provide support for the discount
method only. You should not feel that the original Bridge pattern is affected by the
change. to keep demonstration 1 short and simple, i did not include this method.

Now comes the flexibility part. Let’s assume that the seller wants to sell electronic

items called DVDs. The seller sometimes provides discounts on all products, but during

the holiday seasons, additional discounts are offered for DVDs only.

So, the DVD class now need to include another method to provide the double

discounts (normal discount + additional discount). You cannot add this method in the

ElectronicGoods abstraction class because in that case, Television class will also have this

method which you do not want. Most importantly, although you include the DVD class,

your old code structure cannot change.

The Bridge pattern addresses this problem. The class diagram gives you a clue. In

addition to this, notice how I implement the following method inside the DVD class.

 // Specific method in DVD

 public void DoubleDiscount()

 {

 // Normal discount(10%)

 Discount(10);

 // Festive season additional discount(5%)

 Discount(5);

 }

Chapter 12 Bridge pattern

222

Note You can see that inside DoubleDiscount() method, the Discount(...)
method of ElectronicGoods is used, so i am coding in terms of superclass
abstraction, which allows abstraction and implementation to vary independently.

Since I used constructors instead of properties, let’s look at the changes first. The

following is for abstraction with the Details(...) and Discount(...) methods.

 // Abstraction

 public abstract class ElectronicGoods

 {

 //public IPrice Price { get; set; }

 private IPrice price;

 public string type;

 public double cost;

 public ElectronicGoods(IPrice price)

 {

 this.price = price;

 }

 public void Details()

 {

 price.DisplayDetails(type, cost);

 }

 // Additional method

 public void Discount(int percentage)

 {

 price.GetDiscount(percentage);

 }

 }

Now, this is the first refined abstraction (Television class). In this class, no new

method is defined, which simply means that the Television class is ready to use its

parent class methods and doesn’t wish to provide any new behavior.

 // Refined Abstraction-1

 // Television class uses the default discount method.

 public class Television : ElectronicGoods

Chapter 12 Bridge pattern

223

 {

 public Television(IPrice price):base(price)

 {

 this.type = "Television";

 this.cost = 2000;

 }

 // No additional method exists for Television

 }

The following is our second refined abstraction (DVD class), which is newly added. In

this class, one new method called DoubleDiscount(...) is defined, which simply means

that the client can use this DVD class-specific method if he wants. This method is coded

in the superclass abstraction, and the other hierarchy is unaffected due to the addition

of this DVD class. (I mean that due to the addition of the DVD class (or any other similar

class) in hierarchy 1, you do not need to change ShowroomPrice, OnlinePrice, and so

forth, which are placed in hierarchy 2. Even if you add some additional method(s) to the

abstraction class, you do not need to make changes to hierarchy 2. Similarly, if you add a

method in the implementor, you do not need to make changes in hierarchy 1.)

Note in short, here you separate “the methods that clients use” from “how these
methods are implemented.”

 // Refined Abstraction-2

 // DVD class can give additional discount.

 public class DVD : ElectronicGoods

 {

 public DVD(IPrice price) : base(price)

 {

 this.type = "DVD";

 this.cost = 3000;

 }

 // Specic method in DVD

 public void DoubleDiscount()

 {

Chapter 12 Bridge pattern

224

 // Normal discount(10%)

 Discount(10);

 // Festive season additional discount(5%)

 Discount(5);

 }

}

Do a crosscheck with the class diagram shown in Figure 12-7. Then directly follow

the complete demonstration and output. I don’t show the Solution Explorer view for

this modified implementation, because it is easy to understand with the preceding

discussions and the following class diagram.

 Class Diagram
Figure 12-7 shows the modified class diagram.

Figure 12-7. Class diagram for demonstration 2

Chapter 12 Bridge pattern

225

 Demonstration 2
Here is the complete implementation.

using System;

namespace BridgePatternDemo2

{

 // Abstraction

 public abstract class ElectronicGoods

 {

 //public IPrice Price { get; set; }

 private IPrice price;

 public string type;

 public double cost;

 public ElectronicGoods(IPrice price)

 {

 this.price = price;

 }

 public void Details()

 {

 price.DisplayDetails(type,cost);

 }

 // additional method

 public void Discount(int percentage)

 {

 price.GetDiscount(percentage);

 }

 }

 // Refined Abstraction-1

 // Television class uses the default discount method.

 public class Television : ElectronicGoods

Chapter 12 Bridge pattern

226

 {

 public Television(IPrice price):base(price)

 {

 this.type = "Television";

 this.cost = 2000;

 }

 // No additional method exists for Television

 }

 // Refined Abstraction-2

 // DVD class can give additional discount.

 public class DVD : ElectronicGoods

 {

 public DVD(IPrice price) : base(price)

 {

 this.type = "DVD";

 this.cost = 3000;

 }

 // Specic method in DVD

 public void DoubleDiscount()

 {

 // Normal discount(10%)

 Discount(10);

 // Festive season additional discount

 Discount(5);

 }

 }

 // Implementor

 public interface IPrice

 {

 void DisplayDetails(string product, double price);

 // additional method

 void GetDiscount(int percentage);

 }

 // This is ConcreteImplementor-1

Chapter 12 Bridge pattern

227

 // OnlinePrice class

 public class OnlinePrice : IPrice

 {

 public void DisplayDetails(string productType, double price)

 {

 Console.Write($"\n{productType} price at online is : {price}$");

 }

 public void GetDiscount(int percentage)

 {

 Console.Write($"\nAt online, you can get upto {percentage}%

discount.");

 }

 }

 // This is ConcreteImplementor-2

 // ShowroomPrice class

 public class ShowroomPrice : IPrice

 {

 public virtual void DisplayDetails(string productType, double price)

 {

 // Showroom price is 300$ more

 Console.Write($"\n{productType} price at showroom is : {price +

300}$");

 }

 public void GetDiscount(int percentage)

 {

 Console.Write($"\nAt showroom, additional {percentage}%

discount can be approved.");

 }

 }

 // Client code

 class Client

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Alternative Implementation of Bridge

Pattern.***");

Chapter 12 Bridge pattern

228

 #region Television details

 Console.WriteLine("Verifying the market price of a television.");

 ElectronicGoods eItem = new Television(new OnlinePrice());

 // Verifying online price details

 eItem.Details();

 // Giving 10% discount

 eItem.Discount(10);

 // Verifying showroom price

 eItem = new Television(new ShowroomPrice());

 eItem.Details();

 // Giving 10% discount

 eItem.Discount(10);

 #endregion

 #region DVD details

 Console.WriteLine("\n\nNow checking the DVD details.");

 // Verifying online price

 eItem = new DVD(new OnlinePrice());

 eItem.Details();

 // Giving 10% discount

 eItem.Discount(10);

 // Verifying showroom price

 eItem = new DVD(new ShowroomPrice());

 eItem.Details();

 Console.WriteLine("\nIn showroom, you want to give double

discounts at festive season.");

 Console.WriteLine("For DVD, you can get double discounts using

the DoubleDiscount() method.");

 //eItem.Discount();

 Console.WriteLine("For example, in festive season:");

 ((DVD)eItem).DoubleDiscount();

 #endregion

 }

 }

}

Chapter 12 Bridge pattern

229

 Output
Alternative Implementation of Bridge Pattern.

Verifying the market price of a television.

Television price at online is : 2000$

At online, you can get upto 10% discount.

Television price at showroom is : 2300$

At showroom, additional 10% discount can be approved.

Now checking the DVD details.

DVD price at online is : 3000$

At online, you can get upto 10% discount.

DVD price at showroom is : 3300$

In showroom, you want to give double discounts at festive season.

For DVD , you can get double discounts using the DoubleDiscount() method.

For example, in festive season:

At showroom, additional 10% discount can be approved.

At showroom, additional 5% discount can be approved.

 Q&A Session
12.1 How does this pattern make my programming life easier?
This chapter featured two examples with the following key intents.

• Avoid tight coupling between the items and their corresponding

prices

• Maintain two different hierarchies in which both can be extended

without impacting each other

• Deal with multiple objects in which implementations are shared

among themselves

Chapter 12 Bridge pattern

230

12.2 You could use simple subclassing instead of using this kind of design. Is this
correct?

No. With simple subclassing, your implementations cannot vary dynamically. Your

implementations may seem to behave differently, but they are bound to the abstraction

at compile time.

12.3 Can I use constructors instead of properties inside the Abstraction class?
Yes. Some developers prefer constructors over properties (or getter-setter methods).

Therefore, I showed you both usages in two demonstrations.

12.4 What are the key advantages of using a Bridge design pattern?
Here are some of the advantages.

• Implementations are not bound to the abstractions.

• Both the abstractions and implementations can grow independently.

• Concrete classes are independent of the interface implementer

classes. In other words, changes in one of them do not affect the

other. So, you can also vary the abstraction and the implementation

hierarchies in different ways.

12.5 What are the challenges associated with this pattern?
The overall structure may become complex. Here you do not directly invoke a

method. Instead, the abstraction layer delegates the work to the implementation layer.

So, you may notice a slight performance impact when you execute an operation.

Sometimes the Bridge pattern is confused with the Adapter pattern. (Remember that

the key purpose of an Adapter pattern is to deal with incompatible interfaces only.)

12.6 “You can use a combination of the implementor method when you use
an abstraction class method. In demonstration 2, you see this.” Can you please
elaborate?

It is shown in the DoubleDiscount() method in demonstration 2, where you invoke

the Discount() method twice. As another example, let’s say the implementor has the

following GiveThanks() method.

public interface IPrice

 {

 void DisplayDetails(string product, double price);

 // Additional method

Chapter 12 Bridge pattern

231

 void GetDiscount(int percentage);

 // Added for Q&A session

 void GiveThanks();

 }

And the concrete implementors implemented the method. Let’s say OnlinePrice

implemented this method as follows.

public void GiveThanks()

 {

 Console.Write("Thank you, please visit the site again.");

 }

And another concrete implementor, ShowroomPrice, implements this method as

follows.

public void GiveThanks()

{

Console.Write("Thank you for coming. please visit the shop again.");

 }

Now, inside the abstraction, you can add this method (if you want). For example,

your updated Discount may look like the following.

// Additional method

public void Discount(int percentage)

{

 price.GetDiscount(percentage);

 // Added for Q&A session

 price.GiveThanks();

}

And when you run the program (demonstration 2) with these changes, you see the

following modified output.

Alternative Implementation of Bridge Pattern.

Verifying the market price of a television.

Television price at online is : 2000$

At online, you can get upto 10% discount.Thank you, please visit the site again.

Chapter 12 Bridge pattern

232

Television price at showroom is : 2300$

At showroom, additional 10% discount can be approved. Thank you for coming.

Please visit the shop again.

Now checking the DVD details.

DVD price at online is : 3000$

At online, you can get upto 10% discount. Thank you, please visit the site again.

DVD price at showroom is : 3300$

In showroom, you want to give double discounts at festive season.

For DVD , you can get double discounts using the DoubleDiscount() method.

For example, in festive season:

At showroom, additional 10% discount can be approved. Thank you for coming.

Please visit the shop again.

At showroom, additional 5% discount can be approved. Thank you for coming.

Please visit the shop again.

Note a high-level abstraction method can include multiple implementor methods,
but clients may not be aware of this.

Chapter 12 Bridge pattern

PART I.C

Behavioral Patterns

235
© Vaskaran Sarcar 2020
V. Sarcar, Design Patterns in C#, https://doi.org/10.1007/978-1-4842-6062-3_13

CHAPTER 13

Visitor Pattern
This chapter covers the Visitor pattern.

 GoF Definition
Represent an operation to be performed on the elements of an object structure. Visitor

lets you define a new operation without changing the classes of the elements on which it

operates.

 Concept
In this pattern, you separate an algorithm from an object structure. So, you can add

new operations on objects without modifying their existing architecture. This pattern

supports the open/close principle (which says the extension is allowed, but modification

is disallowed for entities such as class, function, and so on).

Note You can experience the true power of this design pattern when you
combine it with the Composite pattern, as shown in an implementation later in this
chapter.

To understand this pattern, let’s consider a scenario in which you have an abstract

class called Number as follows.

 /// <summary>

 /// Abstract class- Number

 /// </summary>

 abstract class Number

 {

https://doi.org/10.1007/978-1-4842-6062-3_13#DOI

236

 private int numberValue;

 private string type;

 public Number(string type, int number)

 {

 this.type = type;

 this.numberValue = number;

 }

 // I want to restrict the change in original data

 // So, no setter is present here.

 public int NumberValue

 {

 get

 {

 return numberValue;

 }

 }

 public string TypeInfo

 {

 get

 {

 return type;

 }

 }

 public abstract void SomeMethod();

 }

There are two concrete classes called SmallNumber and BigNumber that derive from

Number, which is defined as follows.

 /// <summary>

 /// Concrete class-SmallNumber

 /// </summary>

 class SmallNumber : Number

 {

 public SmallNumber(string type, int number) : base(type, number)

 { }

Chapter 13 Visitor pattern

237

 public override void SomeMethod()

 {

 // Some code

 }

 }

 /// <summary>

 /// Concrete class-BigNumber

 /// </summary>

 class BigNumber : Number

 {

 public BigNumber(string type, int number) : base(type, number)

 { }

 public override void SomeMethod

 {

 // Some code

 }

 }

This inheritance hierarchy is easy to understand. Now let’s look at an imaginary

conversation between you and your customer.

Customer: I want you to create a design in which each concrete class has a method to

increment the number value.

You: That’s easy. I’ll introduce a common method in the Number class, and as a

result, each of the concrete classes can get the method.

Customer: Wait. I want you to use a method that increments the number, but in each

invocation of the method in the SmallNumber class, it should increment the number by 1,

and for the BigNumber class, it should increment the number by 10.

You: That won’t be a problem. I can define an abstract method in the Number class,

and in each of the derived classes, you can implement it differently.

Customer: That’s fine with me.

You can accept this customer request as a one-off, but if your client often asks for

similar requests, will it be possible for you to introduce methods like this in each class,

particularly when the overall code structure is very complex? Also, in a tree structure, if

it is just a branch node, can you imagine the impact of these changes across other nodes?

Chapter 13 Visitor pattern

238

This time you may understand the problem and may think of some way to handle

your fickle-minded customers. The Visitor pattern can help you in a situation like this.

You see such an implementation in demonstration 1.

 Real-World Example
Think of a taxi-booking scenario. When the taxi arrives at your door, and you enter

the vehicle, the taxi driver takes control of transportation. He can take you to your

destination through a route that you are not familiar with, and in the worst case, it can

alter the destination (which is generated due to improper use of the Visitor pattern).

 Computer-World Example
This pattern is useful when public APIs need to support plug-in operations. Clients

can then perform their intended operations on a class (with the visiting class) without

modifying the source.

 Implementation
Let’s continue our discussion on the Visitor pattern. You can see the class diagram

in Figure 13-1. It gives you a hint on how I’ve implemented it in the upcoming

demonstration. I introduced a new hierarchy, in which, at the top level, there is

an interface called IVisitor with two methods called VisitBigNumbers(..) and

VisitSmallNumbers(..). It looks like the following.

 interface IVisitor

 {

 // A visit operation for SmallNumber class

 void VisitSmallNumbers(SmallNumber number);

 // A visit operation for BigNumber class

 void VisitBigNumbers(BigNumber number);

 }

Chapter 13 Visitor pattern

239

Note instead of using different names (Visitsmallnumbers(..),
VisitBignumbers(...)) for these methods, you could use the same method (for
example, Visitnumbers(...)) by using method overloading. in the Q&a session, i
discuss the reason for using different names in this example.

IncrementNumberVisitor implements this interface method, which looks like the

following.

 class IncrementNumberVisitor : IVisitor

 {

 public void VisitSmallNumbers(SmallNumber number)

 {

 Number currentNumber = number as Number;

 /*

 I do not want (infact I can't change because it's readonly

now) to modify the original data. So, I'm making a copy of it

before I use it.

 */

 int temp = currentNumber.NumberValue;

 // For SmallNumber's incrementing by 1

 Console.WriteLine($"{currentNumber.TypeInfo} is {currentNumber.

NumberValue}; I use it as:{++temp} for rest of my code.");

 // Remaining code, if any

 }

 public void VisitBigNumbers(BigNumber number)

 {

 Number currentNumber = number as Number;

 /*

 * I do not want (infact I can't change because it's readonly now)

 * to modify the original data.

 * So, I'm making a copy of it before I use it.

 */

 int temp = currentNumber.NumberValue;

 // For BigNumber's incrementing by 10

Chapter 13 Visitor pattern

240

 Console.WriteLine($"{currentNumber.TypeInfo} is {currentNumber.

NumberValue}; I convert it as:{temp+10} for rest of my code.");

 // Remaining code, if any

 }

 }

One interesting point to note is that I do not want to modify the original data. So, in

the Number class, you see the getter methods only. It is because I assume that once you

get the data from the concrete Number classes, you can use it differently, but you are not

allowed to change the original data. (It’s a better practice, but it’s optional).

In this example, I maintain a List data structure, called numberList, which initializes

an object structure with different types of numbers. So, in demonstration 1, you get the

following code segment.

 class NumberCollection

 {

 List<Number> numberList = new List<Number>();

 // List contains both SmallNumber's and BigNumber's

 public NumberCollection()

 {

 numberList.Add(new SmallNumber("small-1", 10));

 numberList.Add(new SmallNumber("small-2", 20));

 numberList.Add(new SmallNumber("small-3", 30));

 numberList.Add(new BigNumber("big-1", 200));

 numberList.Add(new BigNumber("big-2", 150));

 numberList.Add(new BigNumber("big-3", 70));

 }

 // remaining code

Again, you can initialize the list in this way, or once you initialize an empty

list, you can supply the elements of the lists inside the client code using the

AddNumberToList(...) method. Similarly, you can remove an element from your list

using the RemoveNumberFromList(...) method. In demonstration 1, I did not use these

methods, but I kept them for your reference. So, note the following methods.

Chapter 13 Visitor pattern

241

 public void AddNumberToList(Number number)

 {

 numberList.Add(number);

 }

 public void RemoveNumberFromList(Number number)

 {

 numberList.Remove(number);

 }

Now we come to the most important segment. Inside the Number class, you see the

following line.

public abstract void Accept(IVisitor visitor);

The concrete derived classes from Number override it as needed. For example,

SmallNumber overrides it as follows.

 public override void Accept(IVisitor visitor)

 {

 visitor.VisitSmallNumbers(this);

 }

And BigNumber implements it as follows.

 public override void Accept(IVisitor visitor)

 {

 visitor.VisitBigNumbers(this);

 }

You can see that inside the Accept method, you can pass a “particular visitor object,”

which in turn can call the appropriate method across the classes. Both the SmallNumber

and BigNumber classes expose themselves through this method (and here encapsulation

is compromised). Now the client interacts with the visitor, and you can add new methods

in the Visitor hierarchy. So, inside the client code, you notice code segments like the

following.

Chapter 13 Visitor pattern

242

NumberCollection numberCollection = new NumberCollection();

// some other code

//

IncrementNumberVisitor incrVisitor = new IncrementNumberVisitor();

// Visitor is visiting the list

Console.WriteLine("IncrementNumberVisitor is about to visit the list:");

numberCollection.Accept(incrVisitor);

 Class Diagram
Figure 13-1 shows the class diagram. This time I wanted you to show the full method

signature in the class diagram, so, to accommodate everything in a common place, the

participants size become smaller than usual.

Figure 13-1. Class diagram

Chapter 13 Visitor pattern

243

 Solution Explorer View
Figure 13-2 shows the high-level structure of the program.

Figure 13-2. Solution Explorer view

Chapter 13 Visitor pattern

244

 Demonstration 1
Here’s the complete code.

using System;

using System.Collections.Generic;

namespace VisitorPattern

{

 /// <summary>

 /// Abstract class- Number

 /// </summary>

 abstract class Number

 {

 private int numberValue;

 private string type;

 public Number(string type, int number)

 {

 this.type = type;

 this.numberValue = number;

 }

 //I want to restrict the change in original data

 //So, no setter is present here.

 public int NumberValue

 {

 get

 {

 return numberValue;

 }

 }

 public string TypeInfo

 {

 get

 {

 return type;

 }

 }

Chapter 13 Visitor pattern

245

 public abstract void Accept(IVisitor visitor);

 }

 /// <summary>

 /// Concrete class-SmallNumber

 /// </summary>

 class SmallNumber : Number

 {

 public SmallNumber(string type, int number) : base(type, number)

 { }

 public override void Accept(IVisitor visitor)

 {

 visitor.VisitSmallNumbers(this);

 }

 }

 /// <summary>

 /// Concrete class-BigNumber

 /// </summary>

 class BigNumber : Number

 {

 public BigNumber(string type, int number) : base(type, number)

 { }

 public override void Accept(IVisitor visitor)

 {

 visitor.VisitBigNumbers(this);

 }

 }

 class NumberCollection

 {

 List<Number> numberList = new List<Number>();

 //List contains both SmallNumber's and BigNumber's

 public NumberCollection()

 {

 numberList.Add(new SmallNumber("small-1", 10));

 numberList.Add(new SmallNumber("small-2", 20));

Chapter 13 Visitor pattern

246

 numberList.Add(new SmallNumber("small-3", 30));

 numberList.Add(new BigNumber("big-1", 200));

 numberList.Add(new BigNumber("big-2", 150));

 numberList.Add(new BigNumber("big-3", 70));

 }

 public void AddNumberToList(Number number)

 {

 numberList.Add(number);

 }

 public void RemoveNumberFromList(Number number)

 {

 numberList.Remove(number);

 }

 public void DisplayList()

 {

 Console.WriteLine("Current list is as follows:");

 foreach (Number number in numberList)

 {

 Console.Write(number.NumberValue+"\t");

 }

 Console.WriteLine();

 }

 public void Accept(IVisitor visitor)

 {

 foreach (Number n in numberList)

 {

 n.Accept(visitor);

 }

 }

 }

 /// <summary>

 /// The Visitor interface.

 /// GoF suggests to make visit opearation for each concrete class of

/// ConcreteElement (in our example,SmallNumber and BigNumber) in the

/// object structure

 /// </summary>

Chapter 13 Visitor pattern

247

 interface IVisitor

 {

 //A visit operation for SmallNumber class

 void VisitSmallNumbers(SmallNumber number);

 //A visit operation for BigNumber class

 void VisitBigNumbers(BigNumber number);

 }

 /// <summary>

 /// A concrete visitor-IncrementNumberVisitor

 /// </summary>

 class IncrementNumberVisitor : IVisitor

 {

 public void VisitSmallNumbers(SmallNumber number)

 {

 Number currentNumber = number as Number;

 /*

 I do not want(infact I can't change because it's readonly

now) to modify the original data. So, I'm making a copy of it

before I use it.

 */

 int temp = currentNumber.NumberValue;

 //For SmallNumber's incrementing by 1

 Console.WriteLine($"{currentNumber.TypeInfo} is {currentNumber.

NumberValue}; I use it as:{++temp} for rest of my code.");

 //Remaining code, if any

 }

 public void VisitBigNumbers(BigNumber number)

 {

 Number currentNumber = number as Number;

 /*

 I do not want(infact I can't change because it's readonly

now) to modify the original data. So, I'm making a copy of it

before I use it.

 */

Chapter 13 Visitor pattern

248

 int temp = currentNumber.NumberValue;

 //For BigNumber's incrementing by 10

 Console.WriteLine($"{currentNumber.TypeInfo} is {currentNumber.

NumberValue}; I convert it as:{temp+10} for rest of my code.");

 //Remaining code, if any

 }

 }

 class Client

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Visitor Pattern Demo***\n");

 NumberCollection numberCollection = new NumberCollection();

 //Showing the current list

 numberCollection.DisplayList();

 IncrementNumberVisitor incrVisitor = new

IncrementNumberVisitor();

 //Visitor is visiting the list

 Console.WriteLine("IncrementNumberVisitor is about to visit the

list:");

 numberCollection.Accept(incrVisitor);

 //Showing the current list

 numberCollection.DisplayList();

 Console.ReadLine();

 }

 }

}

Chapter 13 Visitor pattern

249

 Output
Here’s the output.

Visitor Pattern Demo

Current list is as follows:

10 20 30 200 150 70

IncrementNumberVisitor is about to visit the list:

small-1 is 10; I use it as:11 for rest of my code.

small-2 is 20; I use it as:21 for rest of my code.

small-3 is 30; I use it as:31 for rest of my code.

big-1 is 200; I convert it as:210 for rest of my code.

big-2 is 150; I convert it as:160 for rest of my code.

big-3 is 70; I convert it as:80 for rest of my code.

Current list is as follows:

10 20 30 200 150 70

 Q&A Session
13.1 When should you consider implementing a Visitor design pattern?
Here are some use cases to consider.

• You need to add new operations to a set of objects without changing

their corresponding classes. It is the primary aim to implement

a Visitor pattern. When the operations change very often, this

approach can be your savior.

• If you need to change the logic of various operations, you can simply

do it through a visitor implementation.

13.2 Are there any drawbacks associated with this pattern?
Here are some drawbacks associated with this pattern.

• I mentioned earlier that encapsulation is not its key concern. So, you

can break the power of encapsulation using visitors.

Chapter 13 Visitor pattern

250

• If you need to frequently add new concrete classes to existing

architecture, the visitor hierarchy becomes difficult to maintain. For

example, suppose that you want to add another concrete class in the

original hierarchy. In this case, you need to modify the visitor class

hierarchy accordingly.

13.3 Why are you saying that a visitor class can violate the encapsulation?
Notice that inside the Accept method, you can pass a “particular visitor object,”

which in turn can call the appropriate method across the classes. Both SmallNumber

and BigNumber class expose themselves through this method, and here encapsulation is

compromised.

Also, in many cases, you may see that the visitor needs to move around a composite

structure to gather information from them, and then it can modify with that information.

(Though in demonstration 1, I do not allow this modification). So, when you provide this

kind of support, you violate the core aim of encapsulation.

13.4 Why this pattern compromises with the encapsulation?
Here you perform some operations on a set of objects that can be heterogeneous

also. But your constraint is that you cannot change their corresponding classes. So, your

visitor needs a way to access the members of these objects. To fulfill this requirement,

you are exposing the information to the visitor.

13.5 In demonstration 1, I see that in the visitor interfaces, you are not using the
concept of method overloading. For example, you have written interface methods as
follows.

 // A visit operation for SmallNumber class

 void VisitSmallNumbers(SmallNumber number);

 // A visit operation for BigNumber class

 void VisitBigNumbers(BigNumber number);

It appears to me that you could use something like the following.

 // A visit operation for SmallNumber class

 void VisitNumbers(SmallNumber number);

 // A visit operation for BigNumber class

 void VisitNumbers(BigNumber number);

Chapter 13 Visitor pattern

251

Is this correct?
Nice catch. Yes, you can do that, but I wanted to draw your attention to the fact that

these methods are doing different jobs (one is incrementing the int by 1 and the other is

incrementing it by 10). By using different names, I tried to distinguish them inside the

Number class hierarchy when you go through the code.

In the book Java Design Patterns (Apress, 2018), I used the approach that you

mentioned. You can simply remember that these interface methods should target

specific classes like SmallNumber or BigNumber only.

In demonstration 2, in which I combine the Visitor pattern with the Composite

pattern, the overloaded methods are used.

13.6 Suppose that in demonstration 1, I added another concrete subclass of

Number called UndefinedNumber. How should I proceed? Should I use another specific
method in the visitor interface?

Exactly. You need to define a new method that is specific to this new class. So, your

interface may look like the following (method overloading is used here).

 interface IVisitor

 {

 // A visit operation for SmallNumber class

 void VisitNumbers(SmallNumber number);

 // A visit operation for BigNumber class

 void VisitNumbers(BigNumber number);

 // A visit operation for UndefinedNumber class

 void VisitNumbers(UndefinedNumber number);

 }

And later, you need to implement this new method in the concrete visitor class.

13.7 Suppose, I need to support new operations in the existing architecture.
How should I proceed with a Visitor pattern?

For each new operation, create a new subclass of Visitor and implement the operation

in it. Then, visit your existing structure the way that I showed you in the preceding

examples. For example, if you want methods that investigate whether the int values of

SmallNumber class instances are greater than 10, and for the BigNumber class, whether

they are greater than 100. For this requirement, you can add a new concrete class,

InvestigateNumberVisitor, which inherits from IVisitor and is defined as follows.

Chapter 13 Visitor pattern

252

 /// <summary>

 /// Another concrete visitor-InvestigateNumberVisitor

 /// </summary>

 class InvestigateNumberVisitor : IVisitor

 {

 public void VisitSmallNumbers(SmallNumber number)

 {

 Number currentNumber = number as Number;

 int temp = currentNumber.NumberValue;

 // Checking whether the number is greater than 10 or not

 string isTrue = temp > 10 ? "Yes" : "No";

 Console.WriteLine($"Is {currentNumber.TypeInfo} greater than 10

? {isTrue}");

 }

 public void VisitBigNumbers(BigNumber number)

 {

 Number currentNumber = number as Number;

 int temp = currentNumber.NumberValue;

 // Checking whether the number is greater than 100 or not

 string isTrue = temp > 100 ? "Yes" : "No";

 Console.WriteLine($"Is {currentNumber.TypeInfo} greater than

100 ? {isTrue}");

 }

 }

Now inside the client code, you can add the following segment to check whether it is

working properly or not.

// Visitor-2

InvestigateNumberVisitor investigateVisitor = new

InvestigateNumberVisitor();

// Visitor is visiting the list

Console.WriteLine("InvestigateNumberVisitor is about to visit the list:");

numberCollection.Accept(investigateVisitor);

Chapter 13 Visitor pattern

253

Once you add these segments in demonstration 1, use the client code as follows.

 class Client

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Visitor Pattern Demo2.***\n");

 NumberCollection numberCollection = new NumberCollection();

 // Showing the current list

 numberCollection.DisplayList();

 // Visitor-1

 IncrementNumberVisitor incrVisitor = new IncrementNumberVisitor();

 // Visitor is visiting the list

 Console.WriteLine("IncrementNumberVisitor is about to visit the

list:");

 numberCollection.Accept(incrVisitor);

 // Visitor-2

 InvestigateNumberVisitor investigateVisitor = new

InvestigateNumberVisitor();

 // Visitor is visiting the list

 Console.WriteLine("InvestigateNumberVisitor is about to visit

the list:");

 numberCollection.Accept(investigateVisitor);

 Console.ReadLine();

 }

 }

You can get the following output when you run the program.

Visitor Pattern Demo2.

Current list is as follows:

10 20 30 200 150 70

IncrementNumberVisitor is about to visit the list:

Original data:10; I use it as:11

Original data:20; I use it as:21

Original data:30; I use it as:31

Chapter 13 Visitor pattern

254

Original data:200; I use it as:210

Original data:150; I use it as:160

Original data:70; I use it as:80

InvestigateNumberVisitor is about to visit the list:

Is small-1 greater than 10 ? No

Is small-2 greater than 10 ? Yes

Is small-3 greater than 10 ? Yes

Is big-1 greater than 100 ? Yes

Is big-2 greater than 100 ? Yes

Is big-3 greater than 100 ? No

You can download the full code for this modified example from the Apress website. I

merged this in the namespace called VisitorPatternDemo2.

13.8 I see that you are initializing numberList with objects for SmallNumber and
BigNumber. Is it mandatory to create such a structure?

No. I make a container that helps the client to visit smoothly in one shot. In a

different variation, you could see that you initialize an empty list first and add (or

remove) elements to this inside client code before you traverse the list.

To understand the previous line, you can refer to demonstration 2, where I made the

container class inside the client code only.

 Using Visitor Pattern and Composite Pattern
Together
In demonstration 1, you saw an example of the Visitor design pattern, and in the

Q&A session, you went through an extended version of it. Now I’ll show you another

implementation, but this time, I combine it with the Composite pattern.

Let’s consider the example of the Composite design pattern from Chapter 11. In that

example, there is a college with two different departments. Each of these departments

has one head of department (HOD) and multiple professors/lecturers. All HODs report

to the principal of the college.

Figure 13-3 shows the tree structure for this example. The college structure is the same

as described in Chapter 11. The mathematics lecturers/teachers are M. Joy and M. Roony,

and the CSE teachers are C. Sam, C. Jones, and C. Marium. These lecturers do not supervise

anyone, so they are treated as leaf nodes in the tree diagram. Dr. S. Som is the principal and

Chapter 13 Visitor pattern

255

holds the highest position. Two HODs (Mrs. S. Das (HOD-Math) and Mr. V. Sarcar

(HOD-Comp.Sc) reports to the principal. The HODs and principal are non- leaf nodes.

Now suppose that the principal of the college wants to promote some of the

employees. Let’s say that teaching experience is the only criteria for promotion, but the

criteria varies between senior teachers (branch nodes) and junior teachers (leaf nodes)

as follows: for a junior teacher, the minimum criteria for promotion is 12 years, and for

senior teachers, it is 15 years.

If you understand demonstration 1, you realize that the promotion criteria may

change in the future, and there may be additional requirements from higher authorities.

So, the Visitor pattern is a perfect fit to fulfill the current requirements. This is why in

the upcoming example, you see that a new property and a new method are added to the

Employee interface; it should be easy to understand with the supportive comments.

// Newly added for this example

// To set years of Experience

double Experience { get; set; }

// Newly added for this example

void Accept(IVisitor visitor);

Figure 13-3. Tree structure of the Composite design example

Chapter 13 Visitor pattern

256

Following the design in the demonstration 1, let’s make a visitor interface called

IVisitor with method called VisitEmployee(...), which has two overloaded versions.

Here is the visitor hierarchy.

 /// <summary>

 /// Visitor interface

 /// </summary>

 interface IVisitor

 {

 // To visit leaf nodes

 void VisitEmployees(Employee employee);

 // To visit composite nodes

 void VisitEmployees(CompositeEmployee employee);

 }

 /// <summary>

 /// Concrete visitor class-PromotionCheckerVisitor

 /// </summary>

 class PromotionCheckerVisitor : IVisitor

 {

 string eligibleForPromotion = String.Empty;

 public void VisitEmployees(CompositeEmployee employee)

 {

 //We'll promote them if experience is greater than 15 years

 eligibleForPromotion = employee.Experience > 15 ? "Yes" : "No";

 Console.WriteLine($"\t{ employee.Name } from {employee.Dept} is

eligible for promotion? :{eligibleForPromotion}");

 }

 public void VisitEmployees(Employee employee)

 {

 //We'll promote them if experience is greater than 12 years

 eligibleForPromotion = employee.Experience > 12 ? "Yes" : "No";

 Console.WriteLine($"\t{ employee.Name } from {employee.Dept} is

eligible for promotion? :{eligibleForPromotion}");

 }

}

Chapter 13 Visitor pattern

257

This time, I make the container (a List data structure, called participants) in client

code. When a visitor gathers the necessary details from this college structure, it can show

the eligible candidates for promotion, which is the reason to include the following code

segment.

Console.WriteLine("\n***Visitor starts visiting our composite

structure***\n");

IVisitor visitor = new PromotionCheckerVisitor();

//Visitor is traversing the participant list

foreach (IEmployee emp in participants)

 {

 emp.Accept(visitor);

 }

The visitor is collecting the data one piece at a time from the original college

structure without making any modifications to it. Once the collection process is over,

the visitor analyzes the data to display the intended results. To understand this visually,

you can follow the arrows in Figures 13-4 through 13-8. The principal is at the top of the

organization, so you can assume that he receives no promotion.

 Step 1
Figure 13-4 shows step 1.

Chapter 13 Visitor pattern

258

 Step 2
Figure 13-5 shows step 2.

Figure 13-5. Step 2

Figure 13-4. Step 1

Chapter 13 Visitor pattern

259

 Step 3
Figure 13-6 shows step 3.

 Step 4
Figure 13-7 shows step 4.

Figure 13-6. Step 3

Figure 13-7. Step 4

Chapter 13 Visitor pattern

260

 Step 5
Figure 13-8 shows step 5.

And so on...

I followed a similar design in demonstration 1, and the code example is built on top

of the only demonstration in Chapter 11. For brevity, I do not include the class diagram

and Solution Explorer view for this example. So, go directly through the following

implementation.

 Demonstration 2
Here’s the implementation.

using System;

using System.Collections.Generic;

namespace VisitorWithCompositePattern

{

 interface IEmployee

 {

 //To set an employee name

 string Name { get; set; }

 //To set an employee department

 string Dept { get; set; }

Figure 13-8. Step 5

Chapter 13 Visitor pattern

261

 //To set an employee designation

 string Designation { get; set; }

 //To display an employee details

 void DisplayDetails();

 //Newly added for this example

 //To set years of Experience

 double Experience { get; set; }

 //Newly added for this example

 void Accept(IVisitor visitor);

 }

 //Leaf node

 class Employee : IEmployee

 {

 public string Name { get; set; }

 public string Dept { get; set; }

 public string Designation { get; set; }

 public double Experience { get; set; }

 //Details of a leaf node

 public void DisplayDetails()

 {

 Console.WriteLine($"{Name} works in { Dept} department.

Designation:{Designation}.Experience : {Experience} years.");

 }

 public void Accept(IVisitor visitor)

 {

 visitor.VisitEmployees(this);

 }

 }

 //Non-leaf node

 class CompositeEmployee : IEmployee

 {

 public string Name { get; set; }

 public string Dept { get; set; }

 public string Designation { get; set; }

Chapter 13 Visitor pattern

262

 public double Experience { get; set; }

 //The container for child objects

 //private List<IEmployee> subordinateList = new List<IEmployee>();

 //Making it public now

 public List<IEmployee> subordinateList = new List<IEmployee>();

 //To add an employee

 public void AddEmployee(IEmployee e)

 {

 subordinateList.Add(e);

 }

 //To remove an employee

 public void RemoveEmployee(IEmployee e)

 {

 subordinateList.Remove(e);

 }

 //Details of a composite node

 public void DisplayDetails()

 {

 Console.WriteLine($"\n{Name} works in {Dept} department.

Designation:{Designation}.Experience : {Experience} years.");

 foreach (IEmployee e in subordinateList)

 {

 e.DisplayDetails();

 }

 }

 public void Accept(IVisitor visitor)

 {

 visitor.VisitEmployees(this);

 }

 }

 /// <summary>

 /// Visitor interface

 /// </summary>

Chapter 13 Visitor pattern

263

 interface IVisitor

 {

 //To visit leaf nodes

 void VisitEmployees(Employee employee);

 //To visit composite nodes

 void VisitEmployees(CompositeEmployee employee);

 }

 /// <summary>

 /// Concrete visitor class-PromotionCheckerVisitor

 /// </summary>

 class PromotionCheckerVisitor : IVisitor

 {

 string eligibleForPromotion = String.Empty;

 public void VisitEmployees(CompositeEmployee employee)

 {

 /*

 We'll promote them if experience is greater than 15 years.

 */

 eligibleForPromotion = employee.Experience > 15 ? "Yes" : "No";

 Console.WriteLine($"{ employee.Name } from {employee.Dept} is

eligible for promotion? :{eligibleForPromotion}");

 }

 public void VisitEmployees(Employee employee)

 {

 /*

 We'll promote them if experience is greater

 than 12 years.

 */

 eligibleForPromotion = employee.Experience > 12 ? "Yes" : "No";

 Console.WriteLine($"{ employee.Name } from {employee.Dept} is

eligible for promotion? :{eligibleForPromotion}");

 }

 }

Chapter 13 Visitor pattern

264

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Visitor Pattern with Composite Pattern

Demo. ***");

 #region Mathematics department

 //2 lecturers work in Mathematics department

 Employee mathTeacher1 = new Employee { Name = "M.Joy", Dept =

"Mathematic", Designation = "Lecturer" ,Experience=13.7};

 Employee mathTeacher2 = new Employee { Name = "M.Roony", Dept =

"Mathematics", Designation = "Lecturer", Experience = 6.5 };

 //The college has a Head of Department in Mathematics

 CompositeEmployee hodMaths = new CompositeEmployee { Name

= "Mrs.S.Das", Dept = "Maths", Designation = "HOD-Maths",

Experience = 14 };

 //Lecturers of Mathematics directly reports to HOD-Maths

 hodMaths.AddEmployee(mathTeacher1);

 hodMaths.AddEmployee(mathTeacher2);

 #endregion

 #region Computer Science department

 //3 lecturers work in Computer Sc. department

 Employee cseTeacher1 = new Employee { Name = "C.Sam", Dept =

"Computer Science", Designation = "Lecturer", Experience = 10.2 };

 Employee cseTeacher2 = new Employee { Name = "C.Jones", Dept

= "Computer Science.", Designation = "Lecturer", Experience =

13.5 };

 Employee cseTeacher3 = new Employee { Name = "C.Marium", Dept =

"Computer Science", Designation = "Lecturer", Experience = 7.3 };

 //The college has a Head of Department in Computer science

 CompositeEmployee hodCompSc = new CompositeEmployee { Name =

"Mr. V.Sarcar", Dept = "Computer Sc.", Designation = "HOD-

Computer Sc.", Experience = 16.5 };

Chapter 13 Visitor pattern

265

 //Lecturers of Computer Sc. directly reports to HOD-CSE

 hodCompSc.AddEmployee(cseTeacher1);

 hodCompSc.AddEmployee(cseTeacher2);

 hodCompSc.AddEmployee(cseTeacher3);

 #endregion

 #region Top level management

 //The college also has a Principal

 CompositeEmployee principal = new CompositeEmployee { Name =

"Dr.S.Som", Dept = "Planning-Supervising-Managing",

Designation = "Principal", Experience = 21 };

 /*

 Head of Departments's of Maths and Computer Science directly

reports to Principal.

 */

 principal.AddEmployee(hodMaths);

 principal.AddEmployee(hodCompSc);

 #endregion

 /*

 Printing the leaf-nodes and branches in the same way i.e. in

each case, we are calling DisplayDetails() method.

 */

 Console.WriteLine("\nDetails of a college structure is as follows:");

 //Prints the complete structure

 principal.DisplayDetails();

 List<IEmployee> participants = new List<IEmployee>();

 //For employees who directly reports to Principal

 foreach (IEmployee e in principal.subordinateList)

 {

 participants.Add(e);

 }

Chapter 13 Visitor pattern

266

 //For employees who directly reports to HOD-Maths

 foreach (IEmployee e in hodMaths.subordinateList)

 {

 participants.Add(e);

 }

 //For employees who directly reports to HOD-Comp.Sc

 foreach (IEmployee e in hodCompSc.subordinateList)

 {

 participants.Add(e);

 }

 Console.WriteLine("\n***Visitor starts visiting our composite

structure***\n");

 IVisitor visitor = new PromotionCheckerVisitor();

 /*

 Principal is already holding the highest position.

 We are not checking whether he is eligible

 for promotion or not.

 */

 //principal.Accept(visitor);

 //Visitor is traversing the participant list

 foreach (IEmployee emp in participants)

 {

 emp.Accept(visitor);

 }

 //Wait for user

 Console.ReadKey();

 }

 }

}

Chapter 13 Visitor pattern

267

 Output
Here’s the output. Some portions are in bold to show you that the visitor was able to

complete its job successfully.

***Visitor Pattern with Composite Pattern Demo. ***

Details of a college structure is as follows:

Dr.S.Som works in Planning-Supervising-Managing department.

Designation:Principal.Experience : 21 years.

Mrs.S.Das works in Maths department.Designation:HOD-Maths.Experience : 14

years.

M.Joy works in Mathematic department.Designation:Lecturer.Experience : 13.7

years.

M.Roony works in Mathematics department.Designation:Lecturer.Experience :

6.5 years.

Mr. V.Sarcar works in Computer Sc. department.Designation:HOD-Computer Sc..

Experience : 16.5 years.

C.Sam works in Computer Science department.Designation:Lecturer.Experience

: 10.2 years.

C.Jones works in Computer Science. department.Designation:Lecturer.

Experience : 13.5 years.

C.Marium works in Computer Science department.Designation:Lecturer.

Experience : 7.3 years.

Visitor starts visiting our composite structure

Mrs.S.Das from Maths is eligible for promotion? :No

Mr. V.Sarcar from Computer Sc. is eligible for promotion? :Yes

M.Joy from Mathematic is eligible for promotion? :Yes

M.Roony from Mathematics is eligible for promotion? :No

C.Sam from Computer Science is eligible for promotion? :No

C.Jones from Computer Science. is eligible for promotion? :Yes

C.Marium from Computer Science is eligible for promotion? :No

Chapter 13 Visitor pattern

269
© Vaskaran Sarcar 2020
V. Sarcar, Design Patterns in C#, https://doi.org/10.1007/978-1-4842-6062-3_14

CHAPTER 14

Observer Pattern
This chapter covers the Observer pattern.

 GoF Definition
Define a one-to-many dependency between objects so that when one object changes

state, all its dependents are notified and updated automatically.

 Concept
In this pattern, there are many observers (objects) that are observing a particular subject

(also an object). Observers want to be notified when there is a change made inside the

subject. So, they register for that subject. When they lose interest in the subject, they

simply unregister from the subject. Sometimes this model is called a Publisher- Subscriber

(Pub-Sub) model. The whole idea can be summarized as follows: using this pattern, an

object (subject) can send notifications to multiple observers (a set of objects) at the same

time. Observers can decide how to respond to the notification, and they can perform

specific actions based upon the notification.

You can visualize the scenarios with the following diagrams.

In step 1, three observers are requesting to get notifications from a subject (see

Figure 14-1).

https://doi.org/10.1007/978-1-4842-6062-3_14#DOI

270

In step 2, the subject can grant the requests; in other words, a connection is

established (see Figure 14-2).

Figure 14-1. Step 1

Figure 14-2. Step 2

Chapter 14 Observer pattern

271

In step 3, the subject is sending notifications to registered users (see Figure 14-3).

Figure 14-3. Step 3

In step 4 (optional), observer2 does not want to get further notifications and requests

to unregister himself (or the subject doesn’t want to keep observer2 in its notification list

due to some specific reason, and he unregisters observer2). So, the connection between

the subject and observer2 has been broken (see Figure 14-4).

Chapter 14 Observer pattern

272

In step 5, from now on, only Observer1 and Observer3 are getting notifications from

the subject (see Figure 14-5).

Figure 14-4. Step 4

Figure 14-5. Step 5

Chapter 14 Observer pattern

273

 Real-World Example
Think about a celebrity who has many followers on social media. Each of these followers

wants to get all the latest updates from their favorite celebrity. So, they follow the

celebrity until their interest wanes. When they lose interest, they simply do not follow

that celebrity. Think of each of these fans or followers as an observer and the celebrity as

the subject.

 Computer-World Example
Let’s consider a simple UI-based example in computer science. This UI is connected

to some database. A user can execute a query through the UI, and after searching the

database, the results are returned. With this pattern, you segregate the UI from the

database. If a change occurs in the database, the UI should be notified so that it can

update its display accordingly.

To simplify this scenario, assume that you are the person responsible for maintaining

a database in your organization. Whenever there is a change made to the database, you

want to get a notification so that you can take action if necessary. In this context, you can

note the following points.

• You can see the presence of this pattern in any event driven software.

Modern languages like C# have built-in support for handling these

events following this pattern. These constructs make your life easier.

• If you are familiar with the .NET Framework, you see that in C#, you

have generic System.IObservable<T> and System.IObserver<T>

interfaces, in which the generic type parameter provides

notifications.

 Implementation
For this example, I created four observers (Roy, Kevin, Bose, and Jacklin) and two

subjects (Celebrity-1 and Celebrity-2). A subject (in our example, Celebrity)

maintains a list of all of its registered users. The observers receive a notification when the

flag value changes in a subject.

Chapter 14 Observer pattern

274

Initially, three observers (Roy, Kevin, and Bose) registered themselves to get

notifications from Celebrity-1. So, in the initial phase, all of them received notifications.

But then, Kevin lost his interest in Celebrity-1. When Celebrity-1 became aware of this,

he removes Kevin from his observer list. At this time, only Roy and Bose were receiving

notifications (when the flag value is 50). But Kevin changed his mind later and wanted to

get notifications again, so Celebrity-1 registers him again. This is why when Celebrity-1

sets the flag value to 100, all three observers have received notifications from him.

Later, you saw a celebrity named Celebrity-2. Roy and Jacklin are registered in his

observer list. So, when Celebrity-2 sets the flag value to 500, both Roy and Jacklin have

received the notification.

Let’s look at the code. The following is the IObserver interface, which has an

Update(...) method.

 interface IObserver

 {

 void Update(ICelebrity subject);

 }

Two concrete classes—ObserverType1 and ObserverType2—show you that you can

have different types of observers. These classes implement the IObserver interface as

follows.

 // ObserverType1

 class ObserverType1 : IObserver

 {

 string nameOfObserver;

 public ObserverType1(String name)

 {

 this.nameOfObserver = name;

 }

 public void Update(ICelebrity celeb)

 {

 Console.WriteLine($"{nameOfObserver} has received an alert from

{celeb.Name}.Updated value is: {celeb.Flag}");

 }

 }

Chapter 14 Observer pattern

275

 // ObserverType2

 class ObserverType2 : IObserver

 {

 string nameOfObserver;

 public ObserverType2(String name)

 {

 this.nameOfObserver = name;

 }

 public void Update(ICelebrity celeb)

 {

 Console.WriteLine($"{nameOfObserver} notified.Inside

{celeb.Name}, the updated value is: {celeb.Flag}");

 }

 }

The subject interface (ICelebrity) contains three methods called Register(...),

Unregister(...), and NotifyRegisteredUsers(), which are easy to understand. These

methods register an observer, unregister an observer, and notify all registered observers,

respectively. The following is the ICelebrity interface.

 interface ICelebrity

 {

 // Name of Subject

 string Name { get; }

 int Flag { get; set; }

 // To register

 void Register(IObserver o);

 // To Unregister

 void Unregister(IObserver o);

 // To notify registered users

 void NotifyRegisteredUsers();

 }

The Celebrity concrete class implements the ICelebrity interface. One important

point is that this concrete class maintains a list of registered users. You see the following

line of code inside this class.

List<IObserver> observerList = new List<IObserver>();

Chapter 14 Observer pattern

276

Note In some examples of this pattern, you may see a slight variation where
an abstract class is used instead of an interface (ICelebrity), and the list
(observerList) is maintained in the abstract class. both variations are fine. You
can implement your preferred approach.

I used a constructor inside the Celebrity class. The constructor is as follows.

 public Celebrity(string name)

 {

 this.name = name;

 }

I use this constructor for different celebrities. So, inside the client code, you see the

following lines with comments.

Console.WriteLine("Working with first celebrity now.");

ICelebrity celebrity = new Celebrity("Celebrity-1");

// some other code

// Creating another celebrity

ICelebrity celebrity2 = new Celebrity("Celebrity-2");

Lastly, I used an expression-bodied property inside the Celebrity class. You can see

it in this code segment.

 //public string Name

 //{

 // get

 // {

 // return name;

 // }

 //}

 // Or, simply use expression bodied

 // properties(C# v6.0 onwards)

 public string Name => name;

Note If you have a version of C# prior to 6.0, then you can use the commented
code block instead. the same comment applies to similar code in this book.

Chapter 14 Observer pattern

277

The remaining code is easy to understand. Follow the supportive comments if

you want.

 Class Diagram
Figure 14-6 shows the class diagram.

Figure 14-6. The class diagram

Chapter 14 Observer pattern

278

 Solution Explorer View
Figure 14-7 shows the high-level structure of the program.

Figure 14-7. Solution Explorer view

Chapter 14 Observer pattern

279

 Demonstration
Here’s the complete demonstration.

using System;

// We have used List<Observer> here

using System.Collections.Generic;

namespace ObserverPattern

{

 interface IObserver

 {

 void Update(ICelebrity subject);

 }

 class ObserverType1 : IObserver

 {

 string nameOfObserver;

 public ObserverType1(String name)

 {

 this.nameOfObserver = name;

 }

 public void Update(ICelebrity celeb)

 {

 Console.WriteLine($"{nameOfObserver} has received an alert from

{celeb.Name}. Updated value is: {celeb.Flag}");

 }

 }

 class ObserverType2 : IObserver

 {

 string nameOfObserver;

 public ObserverType2(String name)

 {

 this.nameOfObserver = name;

 }

 public void Update(ICelebrity celeb)

 {

Chapter 14 Observer pattern

280

 Console.WriteLine($"{nameOfObserver} notified.Inside {celeb.

Name}, the updated value is: {celeb.Flag}");

 }

 }

 interface ICelebrity

 {

 // Name of Subject

 string Name { get; }

 int Flag { get; set; }

 // To register

 void Register(IObserver o);

 // To Unregister

 void Unregister(IObserver o);

 // To notify registered users

 void NotifyRegisteredUsers();

 }

 class Celebrity : ICelebrity

 {

 List<IObserver> observerList = new List<IObserver>();

 private int flag;

 public int Flag

 {

 get

 {

 return flag;

 }

 set

 {

 flag = value;

 // Flag value changed. So notify observer(s).

 NotifyRegisteredUsers();

 }

 }

Chapter 14 Observer pattern

281

 private string name;

 public Celebrity(string name)

 {

 this.name = name;

 }

 //public string Name

 //{

 // get

 // {

 // return name;

 // }

 //}

 // Or, simply use expression bodied

 // properties(C#6.0 onwards)

 public string Name => name;

 // To register an observer.

 public void Register(IObserver anObserver)

 {

 observerList.Add(anObserver);

 }

 // To unregister an observer.

 public void Unregister(IObserver anObserver)

 {

 observerList.Remove(anObserver);

 }

 // Notify all registered observers.

 public void NotifyRegisteredUsers()

 {

 foreach (IObserver observer in observerList)

 {

 observer.Update(this);

 }

 }

 }

Chapter 14 Observer pattern

282

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Observer Pattern Demonstration.***\n");

 // We have 4 observers - 2 of them are ObserverType1, 1 is of

// ObserverType2

 IObserver myObserver1 = new ObserverType1("Roy");

 IObserver myObserver2 = new ObserverType1("Kevin");

 IObserver myObserver3 = new ObserverType2("Bose");

 IObserver myObserver4 = new ObserverType2("Jacklin");

 Console.WriteLine("Working with first celebrity now.");

 ICelebrity celebrity = new Celebrity("Celebrity-1");

 // Registering the observers - Roy, Kevin, Bose

 celebrity.Register(myObserver1);

 celebrity.Register(myObserver2);

 celebrity.Register(myObserver3);

 Console.WriteLine(" Celebrity-1 is setting Flag = 5.");

 celebrity.Flag = 5;

 /*

 Kevin doesn't want to get further notification.

 So, unregistering the observer(Kevin)).

 */

 Console.WriteLine("\nCelebrity-1 is removing Kevin from the

observer list now.");

 celebrity.Unregister(myObserver2);

 // No notification is sent to Kevin this time. He has

// unregistered.

 Console.WriteLine("\n Celebrity-1 is setting Flag = 50.");

 celebrity.Flag = 50;

 // Kevin is registering himself again

 celebrity.Register(myObserver2);

 Console.WriteLine("\n Celebrity-1 is setting Flag = 100.");

 celebrity.Flag = 100;

Chapter 14 Observer pattern

283

 Console.WriteLine("\n Working with another celebrity now.");

 // Creating another celebrity

 ICelebrity celebrity2 = new Celebrity("Celebrity-2");

 // Registering the observers-Roy and Jacklin

 celebrity2.Register(myObserver1);

 celebrity2.Register(myObserver4);

 Console.WriteLine("\n --Celebrity-2 is setting Flag value as

500.--");

 celebrity2.Flag = 500;

 Console.ReadKey();

 }

 }

}

 Output
Here’s the output.

Observer Pattern Demonstration.

Working with first celebrity now.

 Celebrity-1 is setting Flag = 5.

Roy has received an alert from Celebrity-1. Updated value is: 5

Kevin has received an alert from Celebrity-1. Updated value is: 5

Bose notified.Inside Celebrity-1, the updated value is: 5

Celebrity-1 is removing Kevin from the observer list now.

 Celebrity-1 is setting Flag = 50.

Roy has received an alert from Celebrity-1. Updated value is: 50

Bose notified.Inside Celebrity-1, the updated value is: 50

 Celebrity-1 is setting Flag = 100.

Roy has received an alert from Celebrity-1. Updated value is: 100

Bose notified.Inside Celebrity-1, the updated value is: 100

Kevin has received an alert from Celebrity-1. Updated value is: 100

Chapter 14 Observer pattern

284

 Working with another celebrity now.

 --Celebrity-2 is setting Flag value as 500.--

Roy has received an alert from Celebrity-2. Updated value is: 500

Jacklin notified.Inside Celebrity-2, the updated value is: 500

 Q&A Session
14.1 If there is only one observer, then I do not need to set up the interface. Is

this correct?
Yes. But if you want to follow the pure object-oriented programming guidelines,

you may always prefer interfaces (or abstract classes) over a concrete class. Aside from

this point, there are usually multiple observers, and you implement them following the

contracts. That’s where you benefit from this kind of design.

14.2 Can you have different type of observers?
Yes. Think about this in a real-world scenario. When anyone is making a crucial

change in the organization’s database, multiple groups of people from different

departments may want to know about the change (such as your boss and the owner

of the database, who work at different levels) and act accordingly. So, you may need to

provide support for different type of observers in your application. This is why in this

chapter, I showed you an example involving multiple observers with multiple celebrities.

14.3 Can you add or remove observers at runtime?
Yes. Notice that at the beginning of the program, to get notifications, Kevin registers

himself. Later, he unregisters and then reregisters.

14.4 It appears to me that there are similarities between the Observer pattern
and the Chain of Responsibility pattern (see Chapter 22). Is this correct?

In an Observer pattern, all registered users receive notifications at the same time; but

in the Chain of Responsibility pattern, objects in the chain are notified one by one, which

happens until an object handles the notification fully (or, you reach at the end of the

chain). Figure 14-8 and Figure 14-9 summarize the differences.

Chapter 14 Observer pattern

285

In Figure 14-9, I assume that Observer3 was able to process the notification

completely. So, it is the end node of the chain. In this case, you also need to remember

that you may need to take special action if the notification reaches at the end of the

chain,but no one handles it properly.

14.5 Does this model support one-to-many relationships?
Yes, the GoF definition confirms this. Since a subject can send notifications to

multiple observers, this kind of dependency is depicting a one-to-many relationship.

Figure 14-8. Observer pattern

Figure 14-9. Chain of Responsibility pattern

Chapter 14 Observer pattern

286

14.6 There are ready-made constructs available (for example, System.
IObservable<T>). Instead of using them, why are you writing your own code?

You cannot change ready-made functionalities, but I believe that when you try to

implement the concept yourself, you better understand the ready-made constructs.

Another important point to note is that when you use the System.IObservable<T>

and System.IObserver<T> interfaces, you need to be familiar with generic programming.

Not only that, if you look closely at these interfaces, you see the following.

public interface IObservable<out T>

public interface IObserver<in T>

This simply means that you need to be familiar with covariance and contravariance

in C# too. At first, these concepts may seem difficult. In my book Getting Started with

Advanced C# (Apress, 2020), I discuss these concepts in detail with code examples.

14.7 What are the key benefits of the Observer pattern?
Here are some key advantages.

• Subjects (celebrities in our example) and their registered users

(observers) make up a loosely coupled system. They do not need to

know each other explicitly.

• You do not need to make changes to the subject when you add or

remove an observer from its notification lists.

• Also, you can add or remove observers at runtime independently.

14.8 What are the key challenges associated with an Observer pattern?
Here are some key challenges when you implement (or use) this pattern.

• Undoubtedly, a memory leak is the greatest concern when you

deal with events in C# (also known as a lapsed listener problem). An

automatic garbage collector may not always help you in this context.

• The order of notification is not dependable.

Chapter 14 Observer pattern

https://docs.microsoft.com/en-us/dotnet/api/system.iobservable-1
https://docs.microsoft.com/en-us/dotnet/api/system.iobserver-1

287
© Vaskaran Sarcar 2020
V. Sarcar, Design Patterns in C#, https://doi.org/10.1007/978-1-4842-6062-3_15

CHAPTER 15

Strategy Pattern
This chapter covers the Strategy pattern. It is also known as the Policy pattern.

 GoF Definition
Define a family of algorithms, encapsulates each one, and makes them interchangeable.

Strategy lets the algorithm vary independently from clients that use it.

 Concept
A client can select an algorithm from a set of algorithms dynamically at runtime. This

pattern also provides a simple way to use the selected algorithm.

You know that an object can have states and behaviors. And some of these behaviors

may vary among the objects of a class. This pattern focuses on the changing behaviors

that can be associated with an object at a specific time.

In our example, you see a Vehicle class. You can create a vehicle object using this

class. Once a Vehicle object is created, you can add and set behaviors to this object.

Inside the client code, you can replace the current behavior with a new behavior too.

Most interestingly, you see that since the behaviors can be changed, the vehicle class is

not defining the behavior; it is simply delegating the task to an object referenced by a

vehicle. The overall implementation can make the concept clearer to you.

 Real-World Example
In a soccer match, if Team A is leading 1–0 over Team B toward the end of the game,

instead of attacking, Team A becomes defensive to maintain the lead. At the same time,

Team B goes for an all-out attack to score the equalizer.

https://doi.org/10.1007/978-1-4842-6062-3_15#DOI

288

 Computer-World Example
Suppose that you have a backup memory slot. If your primary memory is full, but you

need to store more data, you can use a backup memory slot. If you do not have this

backup memory slot and you try to store the additional data into your primary memory,

the data is discarded (when the primary memory is full). In these cases, you may get

exceptions, or you may encounter some peculiar behavior (based on the architecture of

the program). So, a runtime check is necessary before you store the data. Then you can

proceed further.

 Implementation
In this implementation, I focus on the changing behaviors of a vehicle only. In the

implementation, you see that once a vehicle object is created, it is associated with

an InitialBehavior, which simply states that in this state, the vehicle cannot do

anything special. But once you set a FlyBehavior, the vehicle can fly. When you set

the FloatBehavior, it can float. All changing behaviors are maintained in a separate

hierarchy.

 /// <summary>

 /// Abstract Behavior

 /// </summary>

 public abstract class VehicleBehavior

 {

 public abstract void AboutMe(string vehicle);

 }

 /// <summary>

 /// Floating capability

 /// </summary>

 class FloatBehavior : VehicleBehavior

 {

 public override void AboutMe(string vehicle)

 {

 Console.WriteLine($"My {vehicle} can float now.");

 }

 }

Chapter 15 Strategy pattern

289

 /// <summary>

 /// Flying capability

 /// </summary>

 class FlyBehavior : VehicleBehavior

 {

 public override void AboutMe(string vehicle)

 {

 Console.WriteLine($"My {vehicle} can fly now.");

 }

 }

 /// <summary>

 /// Initial behavior. Cannot do anything special.

 /// </summary>

 class InitialBehavior : VehicleBehavior

 {

 public override void AboutMe(string vehicle)

 {

 Console.WriteLine($"My {vehicle} is just born.It cannot do anything special.");

 }

 }

In many examples, you see a term called a context class. Vehicle is the context class

in this demonstration. This class is defined as follows.

 /// <summary>

 /// Context class-Vehicle

 /// </summary>

 public class Vehicle

 {

 VehicleBehavior behavior;

 string vehicleType;

 public Vehicle(string vehicleType)

 {

 this.vehicleType = vehicleType;

 // Setting the initial behavior

 this.behavior = new InitialBehavior();

Chapter 15 Strategy pattern

290

 }

 /*

 * It's your choice. You may prefer to use a setter

 * method instead of using a constructor.

 * You can call this method whenever we want

 * to change the "vehicle behavior" on the fly.

 */

 public void SetVehicleBehavior(VehicleBehavior behavior)

 {

 this.behavior = behavior;

 }

 /*

 This method will help us to delegate the behavior to

the object referenced by vehicle.You do not know about the object

type, but you simply know that this object can tell something about

it, i.e. "AboutMe()" method

 */

 public void DisplayAboutMe()

 {

 behavior.AboutMe(vehicleType);

 }

 }

You can see, inside the constructor, I set the initial behavior, which can be altered

later using the SetVehicleBehavior(...) method. DisplayAboutMe() delegates the task

to a particular object.

 Class Diagram
Figure 15-1 shows the important parts of the class diagram.

Chapter 15 Strategy pattern

291

 Solution Explorer View
Figure 15-2 shows the high-level structure of the program.

Figure 15-1. Class diagram

Chapter 15 Strategy pattern

292

 Demonstration
Here’s the implementation.

using System;

namespace StrategyPattern

{

 /// <summary>

 /// Abstract Behavior

 /// </summary>

 public abstract class VehicleBehavior

 {

 public abstract void AboutMe(string vehicle);

 }

Figure 15-2. Solution Explorer view

Chapter 15 Strategy pattern

293

 /// <summary>

 /// Floating capability

 /// </summary>

 class FloatBehavior : VehicleBehavior

 {

 public override void AboutMe(string vehicle)

 {

 Console.WriteLine($"My {vehicle} can float now.");

 }

 }

 /// <summary>

 /// Flying capability

 /// </summary>

 class FlyBehavior : VehicleBehavior

 {

 public override void AboutMe(string vehicle)

 {

 Console.WriteLine($"My {vehicle} can fly now.");

 }

 }

 /// <summary>

 /// Initial behavior.Cannot do anything special.

 /// </summary>

 class InitialBehavior : VehicleBehavior

 {

 public override void AboutMe(string vehicle)

 {

 Console.WriteLine($"My {vehicle} is just born.It cannot do anything special.");

 }

 }

 /// <summary>

 /// Context class-Vehicle

 /// </summary>

 public class Vehicle

 {

Chapter 15 Strategy pattern

294

 VehicleBehavior behavior;

 string vehicleType;

 public Vehicle(string vehicleType)

 {

 this.vehicleType = vehicleType;

 //Setting the initial behavior

 this.behavior = new InitialBehavior();

 }

 /*

 * It's your choice. You may prefer to use a setter

 * method instead of using a constructor.

 * You can call this method whenever we want

 * to change the "vehicle behavior" on the fly.

 */

 public void SetVehicleBehavior(VehicleBehavior behavior)

 {

 this.behavior = behavior;

 }

 /*

 This method will help us to delegate the behavior to

the object referenced by vehicle.You do not know about the object

type, but you simply know that this object can tell something about

it, i.e. "AboutMe()" method

 */

 public void DisplayAboutMe()

 {

 behavior.AboutMe(vehicleType);

 }

 }

 /// <summary>

 /// Client code

 /// </summary>

Chapter 15 Strategy pattern

295

 class Client

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Strategy Pattern Demo.***\n");

 Vehicle context = new Vehicle("Aeroplane");

 context.DisplayAboutMe();

 Console.WriteLine("Setting flying capability to vehicle.");

 context.SetVehicleBehavior(new FlyBehavior());

 context.DisplayAboutMe();

 Console.WriteLine("Changing the vehicle behavior again.");

 context.SetVehicleBehavior(new FloatBehavior());

 context.DisplayAboutMe();

 Console.ReadKey();

 }

 }

}

 Output
Here’s the output.

Strategy Pattern Demo.

My Aeroplane is just born.It cannot do anything special.

Setting flying capability to vehicle.

My Aeroplane can fly now.

Changing the vehicle behavior again.

My Aeroplane can float now.

Chapter 15 Strategy pattern

296

 Q&A Session
15.1 It appears to me that you are complicating everything by focusing on

changing behaviors. Also, I do not understand why I need the Context class at all.
You could simply use the inheritance mechanism and proceed. Can you please
address these concerns?

If a behavior is common for all subtypes, it’s okay to use inheritance, for example,

you can make an abstract class and put the common behavior into it so that all child

classes get the common behavior. But the real power of strategy comes into picture when

the behaviors can vary across the objects, and maintaining them using inheritance is

difficult.

For example, let’s say that you start with different behaviors, and you place them in

an abstract class as follows.

 public abstract class Vehicle

 {

 public abstract void AboutMe();

 public abstract void FloatBehavior();

 public abstract void FlyBehavior();

 public virtual void DefaultJob()

 {

 Console.WriteLine("By default, I float.");

 }

 }

Now let’s say that Boat and Aeroplane are two concrete classes that inherit from

it. You know that a Boat object should not fly, so inside the Boat class, you can simply

override FlyBehavior as follows.

 public override void FlyBehavior()

 {

 throw new NotImplementedException();

 }

Similarly, an Aeroplane object should not float in water (in a normal situation). So,

inside the Aeroplane class, you may override FloatBehavior as follows.

 public override void FloatBehavior()

Chapter 15 Strategy pattern

297

 {

 throw new NotImplementedException();

 }

Now consider when you have lots of changing behaviors across objects like these.

This kind of maintenance can be overhead.

Apart from this, let’s consider a special vehicle that has specialized features. If

you simply put those special features in the abstract class, all other vehicle object

inherits those and need to implement those. But it is not over yet. Further, assume

that there is a constraint on the Boat class, which simply says that it cannot have any

such special behavior. Now you encounter a deadlock situation. If you implement this

special method, you are violating the constraint. If you do not implement it, the system

architecture breaks because the language construct requires you to implement the

behavior. (Or, you need to mark the class with the abstract keyword, but at the same

time, remember that you cannot create an instance from an abstract class.)

To overcome this, I can create a separate inheritance hierarchy with an interface to

hold all the specialized features, and my classes can implement the interface if needed.

But again, it may solve the problem partially because the interface may contain multiple

methods, and your class may need to implement only one of them. In the end, in any

of these cases, the overall maintenance becomes tough. Apart from this, the special

behaviors may change, and in that case, you need to track down all the classes that

implement these behaviors.

In a situation like this, the context class acts as a savior. For example, for the Boat

class object, the client does not set the fly behavior, or for Aeroplane class objects, the

client does not set the float behavior; he simply knows which behavior is expected from

the particular vehicle. So, if you want, you can guard against a situation in which a client

mistakenly sets an incorrect behavior to a vehicle.

To simplify this, the context class holds a reference variable for the changing

behavior and delegates the task to the appropriate behavior class. This is why you see the

following segment in our Vehicle context class.

 public class Vehicle

 {

 VehicleBehavior behavior;

 //Some other code

Chapter 15 Strategy pattern

298

 /*

 * It's your choice. You may prefer to use a setter

 * method instead of using a constructor.

 * You can call this method whenever we want

 * to change the "vehicle behavior" on the fly.

 */

 public void SetVehicleBehavior(VehicleBehavior behavior)

 {

 this.behavior = behavior;

 }

 //Some other code

 }

A “has-a” relationship fits better than an “is-a” relationship for this example, and it is

one of the primary reasons that most of the design patterns encourage composition over

inheritance.

15.2 What are the key advantages of using a Strategy design pattern?
Here are some of the key advantages.

• This design pattern makes your classes independent from algorithms.

Here a class delegates the algorithms to the strategy object (that

encapsulates the algorithm) dynamically at runtime. So, the choice of

algorithms is not bound at compile time.

• It’s easier to maintain your codebase.

• It’s easily extendable.

You can refer to the answer in Q&A 15.1 in this context.

15.3 What are the key challenges associated with a Strategy design pattern?
The disadvantages can be summarized as follows.

• The addition of context classes causes more objects to exits in your

application.

• Users of the application must be aware of different strategies;

otherwise, the output may surprise them.

Chapter 15 Strategy pattern

299
© Vaskaran Sarcar 2020
V. Sarcar, Design Patterns in C#, https://doi.org/10.1007/978-1-4842-6062-3_16

CHAPTER 16

Template Method Pattern
This chapter covers the Template Method pattern.

 GoF Definition
Define the skeleton of an algorithm in an operation, deferring some steps to subclasses.

Template method lets subclasses redefine certain steps of an algorithm without

changing the algorithm’s structure.

 Concept
Using this pattern, you begin with the minimum or essential structure of an algorithm.

Then you defer some responsibilities to the subclasses. As a result, the derived class can

redefine some steps of an algorithm without changing the flow of the algorithm.

Simply, this design pattern is useful when you implement a multistep algorithm but

allow customization through subclasses.

 Real-World Example
When you order a pizza, the chef of the restaurant can use a basic mechanism to prepare

the pizza, but he may allow you to select the final materials. For example, a customer can

opt for different toppings such as bacon, onions, extra cheese, mushrooms, and so on.

So, just before the delivery of the pizza, the chef can include these choices.

https://doi.org/10.1007/978-1-4842-6062-3_16#DOI

300

 Computer-World Example
Suppose that you have been hired to design an online engineering degree course. You

know that, in general, the first semester of the course is the same for all courses. For

subsequent semesters, you need to add new papers or subjects to the application based

on the course opted by a student.

The Template Method pattern makes sense when you want to avoid duplicate code

in your application but allow subclasses to change some specific details of the base class

workflow to bring varying behavior to the application. (However, you may not want to

override the base methods entirely to make radical changes in the subclasses. In this

way, the pattern differs from simple polymorphism.)

 Implementation
Assume that each engineering student needs to pass mathematics and demonstrate

soft skills (such as communication skills, people management skills, and so on) in their

initial semesters to obtain their degrees. Later, you add special papers to their courses

based on their chosen paths (computer science or electronics).

To serve the purpose, a template method DisplayCourseStructure() is defined in

an abstract class BasicEngineering, which is as follows.

 /// <summary>

 /// Basic skeleton of actions/steps

 /// </summary>

 public abstract class BasicEngineering

 {

 //The following method(step) will NOT vary

 private void Math()

 {

 Console.WriteLine("1.Mathematics");

 }

 //The following method(step) will NOT vary

 private void SoftSkills()

Chapter 16 template method pattern

301

 {

 Console.WriteLine("2.SoftSkills");

 }

 /*

 The following method will vary.It will be

 overridden by derived classes.

 */

 public abstract void SpecialPaper();

 //The "Template Method"

 public void DisplayCourseStructure()

 {

 //Common Papers:

 Math();

 SoftSkills();

 //Specialized Paper:

 SpecialPaper();

 }

 }

Note that subclasses of BasicEngineering cannot alter the flow of

DisplayCourseStructure() method, but they can override the SpecialPaper() method

to include course-specific details and make the final course list different from each other.

The concrete classes called ComputerScience and Electronics are the subclasses of

BasicEngineering, and they take the opportunity to override the SpecialPaper() method.

The following code segment shows such a sample from the ComputerScience class.

//The concrete derived class-ComputerScience

public class ComputerScience : BasicEngineering

{

 public override void SpecialPaper()

 {

 Console.WriteLine("3.Object-Oriented Programming");

 }

}

Chapter 16 template method pattern

302

 Class Diagram
Figure 16-1 shows the important parts of the class diagram.

Figure 16-1. Class diagram

Chapter 16 template method pattern

303

 Solution Explorer View
Figure 16-2 shows the high-level structure of the program.

 Demonstration 1
Here’s the implementation.

using System;

namespace TemplateMethodPattern

{

 /// <summary>

 /// Basic skeleton of actions/steps

 /// </summary>

 public abstract class BasicEngineering

 {

Figure 16-2. Solution Explorer view

Chapter 16 template method pattern

304

 //The following method(step) will NOT vary

 private void Math()

 {

 Console.WriteLine("1.Mathematics");

 }

 //The following method(step) will NOT vary

 private void SoftSkills()

 {

 Console.WriteLine("2.SoftSkills");

 }

 /*

 The following method will vary.It will be

 overridden by derived classes.

 */

 public abstract void SpecialPaper();

 //The "Template Method"

 public void DisplayCourseStructure()

 {

 //Common Papers:

 Math();

 SoftSkills();

 //Specialized Paper:

 SpecialPaper();

 }

 }

 //The concrete derived class-ComputerScience

 public class ComputerScience : BasicEngineering

 {

 public override void SpecialPaper()

 {

 Console.WriteLine("3.Object-Oriented Programming");

 }

 }

Chapter 16 template method pattern

305

 //The concrete derived class-Electronics

 public class Electronics : BasicEngineering

 {

 public override void SpecialPaper()

 {

 Console.WriteLine("3.Digital Logic and Circuit Theory");

 }

 }

 //Client code

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Template Method Pattern Demonstration- -

1.***\n");

 BasicEngineering bs = new ComputerScience();

 Console.WriteLine("Computer Science course includes the

following subjects:");

 bs.DisplayCourseStructure();

 Console.WriteLine();

 bs = new Electronics();

 Console.WriteLine("Electronics course includes the following

subjects:");

 bs.DisplayCourseStructure();

 Console.ReadLine();

 }

 }

}

Chapter 16 template method pattern

306

 Output
Here’s the output.

Template Method Pattern Demonstration-1.

Computer Science course includes the following subjects:

1.Mathematics

2.SoftSkills

3.Object-Oriented Programming

Electronics course includes the following subjects:

1.Mathematics

2.SoftSkills

3.Digital Logic and Circuit Theory

 Q&A Session
16.1 In this pattern, subclasses can simply redefine the methods based on their

needs. Is this correct?
Yes.

16.2 In the abstract class BasicEngineering, only one method is abstract, and the
other two methods are concrete methods. What is the reason behind this?

This is a simple example with only three methods, and you want the subclasses to

override only the SpecialPaper() method here. Other methods are common to both

courses, and they do not need to be overridden by the subclasses.

16.3 Suppose that you want to add some more methods in the BasicEngineering

class, but you want to work on those methods if and only if your child classes
need them; otherwise, you ignore them. This type of situation is common in some
PhD programs where some courses are mandatory, but if a student has certain
qualifications, the student may not need to attend the lectures for those subjects.
Can you design this kind of situation with the Template Method pattern?

Yes, you can. Basically, you want to use a hook, which is a method that can help you

to control the flow in an algorithm.

Chapter 16 template method pattern

307

To show an example of this kind of design, now I add one more method in

BasicEngineering called IncludeAdditionalPaper(). Let’s assume that by default, this

subject is included in the course list, but electronics students can opt-out of this course.

The modified BasicEngineering class now looks like the following (note the bold

lines that indicate the important changes).

 /// <summary>

 /// Basic skeleton of actions/steps

 /// </summary>

 public abstract class BasicEngineering

 {

 //The following method(step) will NOT vary

 private void Math()

 {

 Console.WriteLine("1.Mathematics");

 }

 //The following method(step) will NOT vary

 private void SoftSkills()

 {

 Console.WriteLine("2.SoftSkills");

 }

 /*

 The following method will vary.It will be

 overridden by derived classes.

 */

 public abstract void SpecialPaper();

 //The "Template Method"

 public void DisplayCourseStructure()

 {

 //Common Papers:

 Math();

 SoftSkills();

 //Specialized Paper:

 SpecialPaper();

Chapter 16 template method pattern

308

 //Include an additional subject if required.

 if (IsAdditionalPaperNeeded())

 {

 IncludeAdditionalPaper();

 }

 }

 private void IncludeAdditionalPaper()

 {

 Console.WriteLine("4.Compiler Design.");

 }

 //A hook method.

 //By default,an additional subject is needed

 public virtual bool IsAdditionalPaperNeeded()

 {

 return true;

 }

 }

Since Electronics class doesn’t need to include the additional method,

it is defined as follows:

 //The concrete derived class-Electronics

 public class Electronics : BasicEngineering

 {

 public override void SpecialPaper()

 {

 Console.WriteLine("3.Digital Logic and Circuit Theory");

 }

 //Using the hook method now.

 //Additional paper is not needed for Electronics.

 public override bool IsAdditionalPaperNeeded()

 {

 return false;

 }

 }

Chapter 16 template method pattern

309

Let’s go through the program and output now.

 Demonstration 2
Here’s the modified implementation. The key changes are shown in bold.

using System;

namespace TemplateMethodPattern

{

 /// <summary>

 /// Basic skeleton of actions/steps

 /// </summary>

 public abstract class BasicEngineering

 {

 //The following method(step) will NOT vary

 private void Math()

 {

 Console.WriteLine("1.Mathematics");

 }

 //The following method(step) will NOT vary

 private void SoftSkills()

 {

 Console.WriteLine("2.SoftSkills");

 }

 /*

 The following method will vary.It will be

 overridden by derived classes.

 */

 public abstract void SpecialPaper();

 //The "Template Method"

 public void DisplayCourseStructure()

 {

 //Common Papers:

 Math();

Chapter 16 template method pattern

310

 SoftSkills();

 //Specialized Paper:

 SpecialPaper();

 //Include an additional subject if required.

 if (IsAdditionalPaperNeeded())

 {

 IncludeAdditionalPaper();

 }

 }

 private void IncludeAdditionalPaper()

 {

 Console.WriteLine("4.Compiler Design.");

 }

 //A hook method.

 //By default,an additional subject is needed.

 public virtual bool IsAdditionalPaperNeeded()

 {

 return true;

 }

 }

 //The concrete derived class-ComputerScience

 public class ComputerScience : BasicEngineering

 {

 public override void SpecialPaper()

 {

 Console.WriteLine("3.Object-Oriented Programming");

 }

 //Not tested the hook method.

 //An additional subject is needed

 }

 //The concrete derived class-Electronics

 public class Electronics : BasicEngineering

 {

Chapter 16 template method pattern

311

 public override void SpecialPaper()

 {

 Console.WriteLine("3.Digital Logic and Circuit Theory");

 }

 //Using the hook method now.

 //Additional paper is not needed for Electronics.

 public override bool IsAdditionalPaperNeeded()

 {

 return false;

 }

 }

 //Client code

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Template Method Pattern Demonstration- -

2.***\n");

 BasicEngineering bs = new ComputerScience();

 Console.WriteLine("Computer Science course includes the

following subjects:");

 bs.DisplayCourseStructure();

 Console.WriteLine();

 bs = new Electronics();

 Console.WriteLine("Electronics course includes the following

subjects:");

 bs.DisplayCourseStructure();

 Console.ReadLine();

 }

 }

}

Chapter 16 template method pattern

312

 Output
Here’s the modified output.

Template Method Pattern Demonstration-2.

Computer Science course includes the following subjects:

1.Mathematics

2.SoftSkills

3.Object-Oriented Programming

4.Compiler Design.

Electronics course includes the following subjects:

1.Mathematics

2.SoftSkills

3.Digital Logic and Circuit Theory

Note You may prefer an alternative approach. For example, you could
directly include the default method called IncludeAdditionalPaper()
in BasicEngineering. after that, you could override the method in the
Electronics class and make the method body empty. But this approach does
not look better when you compare it to the previous approach.

16.4 It looks like this pattern is similar to the Builder pattern. Is this correct?
No. Don’t forget the core intent; the Template Method pattern is a behavioral design

pattern, and Builder is a creational design pattern. In the Builder pattern, the clients/

customers are the bosses. They can control the order of the algorithm. In the Template

Method pattern, you (or the developers) are the boss. You put your code in a central

location (for example, the abstract class BasicEngineering.cs in this example), and

you have absolute control over the flow of the execution, which cannot be altered by the

client. For example, you can see that Mathematics and SoftSkills always appear at the

top, following the execution order in the template method DisplayCourseStructure().

The clients need to obey this flow.

If you alter the flow in your template method, other participants will also follow the

new flow.

Chapter 16 template method pattern

313

16.5 What are the key advantages of using a Template Method design pattern?
Here are some of the key advantages.

• You can control the flow of the algorithms. Clients cannot change

them.

• Common operations are in a centralized location. For example, in an

abstract class, the subclasses can redefine only the varying parts so

that you can avoid redundant code.

16.6 What are the key challenges associated with a Template Method design
pattern?

The disadvantages can be summarized as follows.

• The client code cannot direct the sequence of steps. If you want that

type of functionality, use the Builder pattern.

• A subclass can override a method defined in the parent class

(in other words, hiding the original definition in the parent class),

which can go against the Liskov substitution principle that basically

says that if S is a subtype of T, then objects of type T can be replaced

with objects of type S.

• Having more subclasses means more scattered code and difficult

maintenance.

16.7 What happens if a subclass tries to override the other parent methods in
BasicEngineering?

This pattern suggests not to do that. When you use this pattern, you should not

override all the parent methods entirely to bring a radical change in the subclasses. In

this way, it differs from simple polymorphism.

16.8 How does this pattern differ from the Strategy pattern?
You have identified a good point. Yes, the Strategy and the Template Method patterns

have similarities. In Strategy, you can vary the entire algorithm using delegation;

however, the Template Method pattern suggests that you vary certain steps in an

algorithm using inheritance, but the overall flow of the algorithm is unchanged.

Chapter 16 template method pattern

315
© Vaskaran Sarcar 2020
V. Sarcar, Design Patterns in C#, https://doi.org/10.1007/978-1-4842-6062-3_17

CHAPTER 17

Command Pattern
This chapter covers the Command pattern.

 GoF Definition
Encapsulate a request as an object, thereby letting you parameterize clients with different

requests, queue, or log requests, and support undoable operations.

 Concept
Using this pattern, you encapsulate a method invocation process. Here an object can

invoke an operation through some crystalized method and doesn’t worry about how to

perform the operation. This pattern is among those patterns that are normally tough to

understand by merely reading the description. The concept becomes clearer when you see

the implementations. So, stay with me and keep reading until you see demonstration 1.

In general, four terms are important here: invoker, client, command, and receiver,

which are as follows.

• The command object consists of the actions that a receiver performs.

• A command object can invoke a method of the receiver in a way that

is specific to that receiver’s class. The receiver then starts processing

the job (or the action).

• A command object is separately passed to the invoker object to

invoke the command. The invoker object contains the crystallized

methods through which a client can perform a job without worrying

about how the target receiver performs the actual job.

• The client object holds the invoker object and the command objects.

The client only makes the decision (i.e., which commands to execute)

and then passes the command to the invoker object for execution.

https://doi.org/10.1007/978-1-4842-6062-3_17#DOI

316

 Real-World Example
When you are drawing a picture, you may need to redraw (undo) some parts of it to make

it better.

 Computer-World Example
In general, you can observe this pattern in the menu system of an editor or integrated

development environment (IDE). For example, you can use the Command pattern to

support undo, multiple undos, or similar operations in a software application.

Microsoft uses this pattern in Windows Presentation Foundation (WPF). A 2012

article that appeared in Visual Studio Magazine (https://visualstudiomagazine.com/

articles/2012/04/10/command-pattern-in- net.aspx) describes it in detail.

The command pattern is well suited for handling GUI interactions. It works
so well that Microsoft has integrated it tightly into the Windows Presentation
Foundation (WPF) stack. The most important piece is the ICommand inter-
face from the System.Windows.Input namespace. Any class that imple-
ments the ICommand interface can be used to handle a keyboard or mouse
event through the common WPF controls. This linking can be done either in
XAML or in a code-behind.

In addition, if you are familiar with Java or Swing, you see that Action is also a

command object.

 Implementation
In this example, RemoteControl is the Invoker class. GameStartCommand and

GameStartCommand are concrete classes to represent commands. These two classes

implement the common interface ICommand, which is as follows (the associated

comments state the purpose of each method).

 public interface ICommand

 {

 // To execute a command

 void Execute();

 // To undo last command execution

 void Undo();

 }

Chapter 17 Command pattern

https://visualstudiomagazine.com/articles/2012/04/10/command-pattern-in-­net.aspx
https://visualstudiomagazine.com/articles/2012/04/10/command-pattern-in-­net.aspx

317

The Game is the receiver class, which has the following definition.

public class Game

{

 string gameName;

 public Game(string name)

 {

 this.gameName = name;

 }

 public void Start()

 {

 Console.WriteLine($"{gameName} is on.");

 }

 public void DisplayScore()

 {

 Console.WriteLine("The score is changing time to time.");

 }

 public void Finish()

 {

 Console.WriteLine($"---The game of {gameName} is over.---");

 }

}

When the client uses a GameStopCommand command and calls the ExecuteCommand

method on an Invoker object as follows.

invoker.ExecuteCommand();

The target receiver (Game class object in this example) performs the following

action only.

game.Finish();

But when the client uses a GameStartCommand command and calls the

ExecuteCommand method on an Invoker object using the same code as follows.

invoker.ExecuteCommand();

Chapter 17 Command pattern

318

The target receiver (Game class object in this example) performs the following

set of actions.

game.Start();

game.DisplayScore();

So, you can see that a command doesn't need to perform only a single action;

instead, based on your needs, you can perform a series of actions on a target receiver

and encapsulate them in a command object.

POINTS TO NOTE

the examples in this chapter show simple demonstrations of undo operations. the

implementation of an undo depends on the specification and can be complex in some

scenarios. For demonstration 1, I simply assume that an undo call simply undoes the last

command that was performed successfully. the Execute() and Undo() methods of the

GameStartCommand and GameStopCommand classes are doing the opposite. that is, when

a client invokes an undo operation using GameStopCommand, the game restarts and displays

the score (which is a simple console message in this example). But if the client invokes

the undo operation using GameStartCommand, the game stops immediately. It’s similar to

switching on a light and switching off the same light; or adding a number to a target number

and as a reverse case, substrating the same number from the resultant number again.

Lastly, look at the following code segments, which is how I create a command object.

Game gameName = new Game("Golf");

// Command to start the game

GameStartCommand gameStartCommand = new GameStartCommand(gameName);

I set the command to an invoker and use its ExecuteCommand() method to execute

the command. Later, I undo this again. I kept the console messages to help you

understand.

Console.WriteLine("**Starting the game and performing undo

immediately.**");

invoker.SetCommand(gameStartCommand);

invoker.ExecuteCommand();

Chapter 17 Command pattern

319

// Performing undo operation

Console.WriteLine("\nUndoing the previous command now.");

invoker.UndoCommand();

 Class Diagram
Figure 17-1 shows the class diagram.

 Solution Explorer View
Figure 17-2 shows the high-level structure of the program.

Figure 17-1. Class diagram

Chapter 17 Command pattern

320

Figure 17-2. Solution Explorer view

Chapter 17 Command pattern

321

 Demonstration 1
Here’s the complete program.

using System;

namespace CommandPattern

{

 /// <summary>

 /// Receiver Class

 /// </summary>

 public class Game

 {

 string gameName;

 public Game(string name)

 {

 this.gameName = name;

 }

 public void Start()

 {

 Console.WriteLine($"{gameName} is on.");

 }

 public void DisplayScore()

 {

 Console.WriteLine("The score is changing time to time.");

 }

 public void Finish()

 {

 Console.WriteLine($"---The game of {gameName} is over.---");

 }

 }

 /// <summary>

 /// The command interface

 /// </summary>

Chapter 17 Command pattern

322

 public interface ICommand

 {

 // To execute a command

 void Execute();

 // To undo last command execution

 void Undo();

 }

 /// <summary>

 /// GameStartCommand

 /// </summary>

 public class GameStartCommand : ICommand

 {

 private Game game;

 public GameStartCommand(Game game)

 {

 this.game = game;

 }

 public void Execute()

 {

 game.Start();

 game.DisplayScore();

 }

 public void Undo()

 {

 Console.WriteLine("Undoing start command.");

 game.Finish();

 }

 }

 /// <summary>

 /// GameStopCommand

 /// </summary>

Chapter 17 Command pattern

323

 public class GameStopCommand : ICommand

 {

 private Game game;

 public GameStopCommand(Game game)

 {

 this.game = game;

 }

 public void Execute()

 {

 Console.WriteLine("Finishing the game.");

 game.Finish();

 }

 public void Undo()

 {

 Console.WriteLine("Undoing stop command.");

 game.Start();

 game.DisplayScore();

 }

 }

 /// <summary>

 /// Invoker class

 /// </summary>

 public class RemoteControl

 {

 ICommand commandToBePerformed, lastCommandPerformed;

 public void SetCommand(ICommand command)

 {

 this.commandToBePerformed = command;

 }

 public void ExecuteCommand()

 {

 commandToBePerformed.Execute();

 lastCommandPerformed = commandToBePerformed;

 }

Chapter 17 Command pattern

324

 public void UndoCommand()

 {

 // Undo the last command executed

 lastCommandPerformed.Undo();

 }

 }

 /// <summary>

 /// Client code

 /// </summary>

 class Client

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Command Pattern Demonstration***\n");

 /* Client holds both the Invoker and Command Objects */

 RemoteControl invoker = new RemoteControl();

 Game gameName = new Game("Golf");

 // Command to start the game

 GameStartCommand gameStartCommand = new

GameStartCommand(gameName);

 // Command to stop the game

 GameStopCommand gameStopCommand = new

GameStopCommand(gameName);

 Console.WriteLine("**Starting the game and performing undo

immediately.**");

 invoker.SetCommand(gameStartCommand);

 invoker.ExecuteCommand();

 // Performing undo operation

 Console.WriteLine("\nUndoing the previous command now.");

 invoker.UndoCommand();

 Console.WriteLine("\n**Starting the game again.Then stopping it

and undoing the stop operation.**");

 invoker.SetCommand(gameStartCommand);

Chapter 17 Command pattern

325

 invoker.ExecuteCommand();

 // Stop command to finish the game

 invoker.SetCommand(gameStopCommand);

 invoker.ExecuteCommand();

 // Performing undo operation

 Console.WriteLine("\nUndoing the previous command now.");

 invoker.UndoCommand();

 Console.ReadKey();

 }

 }

}

 Output
Here’s the output.

Command Pattern Demonstration

Starting the game and performing undo immediately.

Golf is on.

The score is changing time to time.

Undoing the previous command now.

Undoing start command.

---The game of Golf is over.---

**Starting the game again.Then stopping it and undoing the stop

operation.**

Golf is on.

The score is changing time to time.

Finishing the game.

---The game of Golf is over.---

Undoing the previous command now.

Undoing stop command.

Golf is on.

The score is changing time to time.

Chapter 17 Command pattern

326

 Q&A Session
17.1 The GoF definition starts with “Encapsulate a request.” How are you

implementing the encapsulation in demonstration 1?
The command object contains the set of actions that target a specific receiver. When

you set the command and invoke ExecuteCommand() on the invoker object, the intended

actions are performed at the receiver’s end. From the outside, no other objects know

how this happens; they simply know that if they call ExecuteCommand(), their requests

are processed.

17.2 Following the GoF definition, how did you parameterize other objects with
different requests?

Note that I first set GameStartCommand in invoker, and later, I replaced it with

GameStopCommand.Invoker object simply invoked ExecuteCommand() in both cases.

17.3 In this example, you are dealing with a single receiver only. How do you
deal with multiple receivers?

In this example, Game is the receiver class, but no one restricts you from creating a

new class and following the implementation that is shown in demonstration 1. Also, note

that you created a Game class object using the following line.

Game gameName = new Game("Golf");

Since the Game class constructor accepts a string parameter, you could also pass a

different value and create a different object. The following code segment is a sample.

Console.WriteLine("\nPlaying another game now.(Optional for you)");

gameName = new Game("Soccer");

// Command to start the game

gameStartCommand = new GameStartCommand(gameName);

// Command to stop the game

gameStopCommand = new GameStopCommand(gameName);

// Starting the game

invoker.SetCommand(gameStartCommand);

invoker.ExecuteCommand();

Chapter 17 Command pattern

327

// Stopping the game

invoker.SetCommand(gameStopCommand);

invoker.ExecuteCommand();

The previous code segment can generate the following output as expected:

Playing another game now.(Optional for you)

Soccer is on.

The score is changing time to time.

Finishing the game.

---The game of Soccer is over.---

17.4 Can I ignore the invoker object?
Most of the time, programmers try to encapsulate data and the corresponding

methods in object-oriented programming (OOP). But you find that in the Command

pattern, you are trying to encapsulate command objects. In other words, you are

implementing encapsulation from a different perspective.

I told you earlier that when ExecuteCommand() of the invoker object is called, the

intended actions are performed at the receiver’s end. From the outside, no other object

knows how it happens; they simply know that if they call ExecuteCommand(), their

requests are processed. So, simply an invoker contains some crystalized method through

which a client can perform a job without worrying about how the actual job is performed

at the receiver’s end.

This approach makes sense when you need to deal with a complex set of commands.

Let’s review the terms again. You create command objects that you pass to some

receivers to access them, and you execute those commands through an invoker that calls

the methods of the command objects (for example, ExecuteCommand in this example).

For a simple use case, this invoker class is not mandatory. For example, consider a case

in which a command object has only one method to execute, and you are trying to

dispense with the invoker to invoke the method. But invokers may play an important role

when you want to keep track of a series of commands in a log file (or in a queue).

17.5 Why would you want to keep track of these logs?
You may want to create undo or redo operations.

Chapter 17 Command pattern

328

17.6 What are the key advantages associated with the Command pattern?
Here are some advantages.

• Requests for the creation and the ultimate execution are decoupled.

Clients may not know how an invoker is performing the operations.

• You can create macro commands (these are sequences of multiple

commands and can be invoked together. For example, for macro

command, you can create a class that has a constructor to accept a list

of commands. And in its Execute() method, you can invoke Execute()

of these commands sequentially using a for loop/foreach loop).

• New commands can be added without affecting the existing system.

• Most importantly, you can support the much-needed undo (and

redo) operations.

• It should be noted that once you simply create a command object,

it does not mean that the computation starts immediately. You

could schedule it for later or place them in a job queue and execute

them later. Also, by using a thread pool, you can execute them

asynchronously in a multithreaded environment. (Asynchronous

programming is discussed in Chapter 27 of this book.)

17.7 What are the challenges associated with the Command pattern?
Here are some of the disadvantages.

• To support more commands, you need to create more classes. So,

maintenance can be difficult as time goes on.

• How to handle errors or make a decision about what to do with

return values when an erroneous situation occurs becomes tricky.

A client may want to know about those. But here you decouple the

command with client code, so these situations are difficult to handle.

The challenge becomes significant in a multithreaded environment

where the invoker can run in a different thread.

Chapter 17 Command pattern

329

17.8 In demonstration 1, you are undoing only the last command? Is there any
way to implement “undo all”? Also, how do you log requests?

Good question. You can simply maintain a stack that can store the commands, and

then you can simply pop the items from your stack and invoke its undo() method. In

Chapter 19 (on the Memento pattern, which is similar to this pattern), I further discuss

the undos and various implementations. For now, let me show you a simple example, in

which you can undo all the previous commands. Demonstration 2 is made for that. It’s a

simple modification of demonstration 1, so class diagram and solution explorer view are

omitted; you can directly jump into the implementation.

You have asked another question on how to log the requests. In demonstration 2,

when I maintain the list to store the commands that execute, I use this list to support

“undo all commands” using a single method invocation. The same list can serve as a

history of commands which you can print in the console. Or, you can make a separate

file to maintain the details each time a command executes. Later you can retrieve the file

for a detailed look if necessary.

 Modified Implementation
This example shows you a way to invoke multiple undo operations. There are some

small changes made to the invoker class. I maintain a list to store all the commands that

execute. Whenever a command is executed, it is added in the list, and later when I call

UndoAll(), I can simply iterate over this list and call the corresponding undo operations.

The invoker is shown with key changes in bold as follows.

/// <summary>

/// Invoker class

/// </summary>

public class RemoteControl

{

 ICommand commandToBePerformed, lastCommandPerformed;

 List<ICommand> savedCommands = new List<ICommand>();

 public void SetCommand(ICommand command)

 {

 this.commandToBePerformed = command;

 }

Chapter 17 Command pattern

330

 public void ExecuteCommand()

 {

 commandToBePerformed.Execute();

 lastCommandPerformed = commandToBePerformed;

 savedCommands.Add(commandToBePerformed);

 }

 public void UndoCommand()

 {

 // Undo the last command executed

 lastCommandPerformed.Undo();

 }

 public void UndoAll()

 {

 for (int i = savedCommands.Count; i > 0; i--)

 {

 // Get a restore point and call Undo()

 savedCommands[i - 1].Undo();

 }

 }

}

The Game class does not have the Start() method now; instead, it has two new

methods called UpLevel() and DownLevel(), as follows.

public void UpLevel()

{

 ++level;

 Console.WriteLine("Level upgraded.");

}

public void DownLevel()

{

 --level;

 Console.WriteLine("Level downgraded.");

}

Chapter 17 Command pattern

331

The UpLevel() method upgrades the level of the game. The DownLevel() method

does the reverse, so it is used in the Undo operation of the GameStartCommand class. To

serve my key purpose (showing you “undo all”), I do not need the GameStopCommand

class in this example, so to make the example short and simple, I omitted that class too.

Lastly, I made a simple assumption that when the game level is set to 0 (i.e., in the born

state), if you execute Undo(), the game stops. The remaining code is easy to understand,

and you can go through demonstration 2 now.

 Demonstration 2
Here’s complete program.

using System;

using System.Collections.Generic;

namespace CommandPatternDemonstration2

{

 // Receiver Class

 public class Game

 {

 string gameName;

 public int level;

 public Game(string name)

 {

 this.gameName = name;

 level = -1;

 Console.WriteLine($"Game started.");

 }

 public void DisplayLevel()

 {

 Console.WriteLine($"Current level is set to {level}.");

 }

 public void UpLevel()

 {

 ++level;

 Console.WriteLine("Level upgraded.");

 }

Chapter 17 Command pattern

332

 public void DownLevel()

 {

 --level;

 Console.WriteLine("Level downgraded.");

 }

 public void Finish()

 {

 Console.WriteLine($"---The game of {gameName} is over.---");

 }

 }

 public interface ICommand

 {

 void Execute();

 void Undo();

 }

 /// <summary>

 /// GameStartCommand

 /// </summary>

 public class GameStartCommand : ICommand

 {

 private Game game;

 public GameStartCommand(Game game)

 {

 this.game = game;

 }

 public void Execute()

 {

 game.UpLevel();

 game.DisplayLevel();

 }

 public void Undo()

 {

 if (game.level > 0)

 {

Chapter 17 Command pattern

333

 game.DownLevel();

 game.DisplayLevel();

 }

 else

 {

 game.Finish();

 }

 }

 }

 /// <summary>

 /// Invoker class

 /// </summary>

 public class RemoteControl

 {

 ICommand commandToBePerformed, lastCommandPerformed;

 List<ICommand> savedCommands = new List<ICommand>();

 public void SetCommand(ICommand command)

 {

 this.commandToBePerformed = command;

 }

 public void ExecuteCommand()

 {

 commandToBePerformed.Execute();

 lastCommandPerformed = commandToBePerformed;

 savedCommands.Add(commandToBePerformed);

 }

 public void UndoCommand()

 {

 // Undo the last command executed

 lastCommandPerformed.Undo();

 }

 public void UndoAll()

 {

 for (int i = savedCommands.Count; i > 0; i--)

Chapter 17 Command pattern

334

 {

 // Get a restore point and call Undo()

 savedCommands[i - 1].Undo();

 }

 }

 }

 /// <summary>

 /// Client code

 /// </summary>

 class Client

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Command Pattern Demonstration2***\n");

 // Client holds both the Invoker and Command Objects

 RemoteControl invoker = new RemoteControl();

 Game gameName = new Game("Golf");

 // Command to start the game

 GameStartCommand gameStartCommand = new GameStartCommand(gameName);

 Console.WriteLine("**Starting the game and upgrading the level

3 times.**");

 invoker.SetCommand(gameStartCommand);

 invoker.ExecuteCommand();

 invoker.ExecuteCommand();

 invoker.ExecuteCommand();

 // Performing undo operation(s) one at a time

 //invoker.UndoCommand();

 //invoker.UndoCommand();

 //invoker.UndoCommand();

Chapter 17 Command pattern

335

 Console.WriteLine("\nUndoing all the previous commands at one shot.");

 invoker.UndoAll();

 Console.ReadKey();

 }

 }

}

 Output
Here’s the new output.

Command Pattern Demonstration2

Game started.

Starting the game and upgrading level 3 times.

Level upgraded.

Current level is set to 0.

Level upgraded.

Current level is set to 1.

Level upgraded.

Current level is set to 2.

Undoing all the previous commands at one shot.

Level downgraded.

Current level is set to 1.

Level downgraded.

Current level is set to 0.

---The game of Golf is over.---

Chapter 17 Command pattern

337
© Vaskaran Sarcar 2020
V. Sarcar, Design Patterns in C#, https://doi.org/10.1007/978-1-4842-6062-3_18

CHAPTER 18

Iterator Pattern
This chapter covers the Iterator pattern.

 GoF Definition
Provide a way to access the elements of an aggregate object sequentially without

exposing its underlying representation.

 Concept
Iterators are generally used to traverse a container (or a collection of objects) to access

its elements without knowing how the data are stored internally. It is very useful when

you need to traverse different kinds of collection objects in a standard and uniform way.

Figure 18-1 shows a sample and most common diagram for an Iterator pattern.

Figure 18-1. A sample diagram for an Iterator pattern

https://doi.org/10.1007/978-1-4842-6062-3_18#DOI

338

The participants are described as follows.

• Iterator is an interface that accesses or traverses elements.

• ConcreteIterator implements the Iterator interface methods.

It can also keep track of the current position in the traversal of the

aggregate.

• Aggregate defines an interface that can create an Iterator object.

• ConcreteAggregate implements the Aggregate interface. It returns

an instance of the ConcreteIterator.

POINTS TO NOTE

• It is frequently used to traverse the nodes of a tree-like structure. In many

examples, you may notice the Iterator pattern with the Composite pattern.

• The role of an iterator is not limited to traversing. This role can vary to support

various requirements. For example, you can filter the elements in various ways.

• Clients cannot see the actual traversal mechanism. A client program only uses

public iterator methods.

• The concept of iterators and enumerators has existed for a long time.

Enumerators produce the next element based on a criterion, whereas using

iterators, you cycle a sequence from a starting point to the endpoint.

• It’s a common practice to apply a foreach iterator to a collection generated from

an enumerator. You can then fetch the value and apply it in the body of the loop.

 Real-World Example
Suppose there are two companies: Company A and Company B. Company A stores its

employee records (i.e., each employee’s name, address, salary details, etc.) in a linked

list data structure. Company B stores its employee data in an array. One day, the two

companies decide to merge to form one big company. The Iterator pattern is handy in

such a situation because you do need not to write the code from scratch. In a situation

like this, you can have a common interface through which you can access the data for

both companies. So, you can simply call those methods without rewriting the code.

ChApTEr 18 ITErATor pATTErn

339

Consider another example. Suppose your company has decided to promote some

employees based on their performances. So, all the managers get together and set a

common criterion for promotion. Then they iterate over the records of the employees

one by one to mark the potential candidates for promotion.

You can consider the example from a different domain too. For example, when

you store songs in your preferred audio devices (for example, into an MP3 player) or

your mobile devices, you can iterate over them through various button press or swipe

movements. The basic idea is to provide you a mechanism so that you can iterate over

your list smoothly.

 Computer-World Example
Go through the following two bullet points. These are common examples of Iterator

pattern.

• C# has iterators that were introduced in Visual Studio 2005. The

foreach statement is frequently used in this context. To learn

more about these built-in functionalities, refer to https://docs.

microsoft.com/en-us/dotnet/csharp/iterators.

• If you are familiar with Java, you may have used Java’s built-in

Iterator interface, java.util.Iterator. This pattern is used in

interfaces like java.util.Iterator or java.util.Enumeration.

 Implementation
Similar to our real-world example, let’s assume that there is a college with two

departments: the sciences and the arts. The arts department uses an array data structure

to maintain its course details, but the science department is using a linked list data

structure to keep the same. The administrative department does not interfere with how a

department maintains these details. It is simply interested in getting the data from each

department and wants to access the data uniformly. Now assume you are a member

of the administrative department, and at the beginning of a new session, you want to

advertise the curriculum using the iterators. Let’s see how we can implement it in the

upcoming demonstration.

ChApTEr 18 ITErATor pATTErn

https://docs.microsoft.com/en-us/dotnet/csharp/iterators
https://docs.microsoft.com/en-us/dotnet/csharp/iterators

340

Let’s assume that you have an iterator called IIterator, which acts as the common

interface in the upcoming example, and it currently supports four basic methods:

First(), Next(), CurrentItem(), and IsCollectionEnds(), which are as follows.

• The First() method reset the pointer to the first element before you

start traversing a data structure.

• The Next() method returns the next element in the container.

• The CurrentItem() method returns the current element of the

container that the iterator is pointing at a particular time.

• The IsCollectionEnds() validates whether any next element is

available for further processing or not. So, this method helps you to

decide whether you have reached the end of your container.

These methods are implemented in each of the ScienceIterator and ArtsIterator

classes. You’ll see that the CurrentItem() method is defined differently in the

ScienceIterator and ArtIterator classes. Also, to print the curriculum, I used only two

of these methods: IsCollectionEnds() and Next(). If you want, you can experiment

with the two remaining methods, First() and currentItem(). I mentioned the four

methods and provided some sample implementations for them because they are very

common in Iterator pattern implementations. These sample implementations can help

you understand those examples too.

POINT TO NOTE

The code size of the program can be halved if you consider either the sciences or the arts

subjects only. But I kept them both to show you that the Iterator pattern can help you to

traverse without knowing how the data are stored internally. For sciences, the subjects are

stored in a linked list, but for arts, subjects are stored in an array. Still, by using this pattern,

you can traverse and print the subjects in a uniform way.

 Class Diagram
Figure 18-2 shows the class diagram.

ChApTEr 18 ITErATor pATTErn

341

 Solution Explorer View
Figure 18-3 shows the high-level structure of the program. It’s a big program and tough

to accommodate everything properly in a single screenshot, so I expanded only the

details for the Science department.

Figure 18-2. Class diagram

ChApTEr 18 ITErATor pATTErn

342

 Demonstration 1
Here’s the implementation.

using System;

using System.Collections.Generic;

using System.Linq;

Figure 18-3. Solution Explorer view

ChApTEr 18 ITErATor pATTErn

343

namespace IteratorPattern

{

 #region Iterator

 public interface IIterator

 {

 // Reset to first element

 void First();

 // Get next element

 string Next();

 // End of collection check

 bool IsCollectionEnds();

 // Retrieve Current Item

 string CurrentItem();

 }

 /// <summary>

 /// ScienceIterator

 /// </summary>

 public class ScienceIterator : IIterator

 {

 private LinkedList<string> Subjects;

 private int position;

 public ScienceIterator(LinkedList<string> subjects)

 {

 this.Subjects = subjects;

 position = 0;

 }

 public void First()

 {

 position = 0;

 }

 public string Next()

 {

 return Subjects.ElementAt(position++);

 }

ChApTEr 18 ITErATor pATTErn

344

 public bool IsCollectionEnds()

 {

 if (position < Subjects.Count)

 {

 return false;

 }

 else

 {

 return true;

 }

 }

 public string CurrentItem()

 {

 return Subjects.ElementAt(position);

 }

 }

 /// <summary>

 /// ArtsIterator

 /// </summary>

 public class ArtsIterator : IIterator

 {

 private string[] Subjects;

 private int position;

 public ArtsIterator(string[] subjects)

 {

 this.Subjects = subjects;

 position = 0;

 }

 public void First()

 {

 position = 0;

 }

ChApTEr 18 ITErATor pATTErn

345

 public string Next()

 {

 //Console.WriteLine("Currently pointing to the subject: "+

this.CurrentItem());

 return Subjects[position++];

 }

 public bool IsCollectionEnds()

 {

 if (position >= Subjects.Length)

 {

 return true;

 }

 else

 {

 return false;

 }

 }

 public string CurrentItem()

 {

 return Subjects[position];

 }

 }

 #endregion

 #region Aggregate

 public interface ISubjects

 {

 IIterator CreateIterator();

 }

 public class Science : ISubjects

 {

 private LinkedList<string> Subjects;

ChApTEr 18 ITErATor pATTErn

346

 public Science()

 {

 Subjects = new LinkedList<string>();

 Subjects.AddFirst("Mathematics");

 Subjects.AddFirst("Computer Science");

 Subjects.AddFirst("Physics");

 Subjects.AddFirst("Electronics");

 }

 public IIterator CreateIterator()

 {

 return new ScienceIterator(Subjects);

 }

 }

 public class Arts : ISubjects

 {

 private string[] Subjects;

 public Arts()

 {

 Subjects = new[] { "English", "History", "Geography",

"Psychology" };

 }

 public IIterator CreateIterator()

 {

 return new ArtsIterator(Subjects);

 }

 }

 #endregion

 /// <summary>

 /// Client code

 /// </summary>

 class Client

 {

 static void Main(string[] args)

 {

ChApTEr 18 ITErATor pATTErn

347

 Console.WriteLine("***Iterator Pattern Demonstration.***");

 // For Science

 ISubjects subjects= new Science();

 IIterator iterator = subjects.CreateIterator();

 Console.WriteLine("\nScience subjects :");

 Print(iterator);

 // For Arts

 subjects = new Arts();

 iterator = subjects.CreateIterator();

 Console.WriteLine("\nArts subjects :");

 Print(iterator);

 Console.ReadLine();

 }

 public static void Print(IIterator iterator)

 {

 while (!iterator.IsCollectionEnds())

 {

 Console.WriteLine(iterator.Next());

 }

 }

 }

}

 Output
Here’s the output.

Iterator Pattern Demonstration.

Science subjects :

Electronics

Physics

Computer Science

Mathematics

ChApTEr 18 ITErATor pATTErn

348

Arts subjects :

English

History

Geography

Psychology

Note You may use two or more different data structures in an implementation
to demonstrate the power of this pattern. You have seen that in the previous
demonstration, I used the First (), Next(), IsCollectionEnds(), and
CurrentItem() methods with different implementations that vary due to their
internal data structures.

one use of CurrentItem() is also shown in the commented code. If you want to
test it, you can uncomment the line.

 Demonstration 2
Now let’s look at another implementation using C#’s built-in support for iterator pattern.

I used the IEnumerable interface, so you do not need to define a custom iterator. But to

use this interface, you need to include the following line at the beginning of the program.

using System.Collections;

If you see the definition in Visual Studio, it describes the following.

//

// Summary:

// Exposes an enumerator, which supports a simple iteration over a

// non- generic collection.

[NullableContextAttribute(1)]

public interface IEnumerable

{

 //

 // Summary:

 // Returns an enumerator that iterates through a collection.

 //

ChApTEr 18 ITErATor pATTErn

349

 // Returns:

 // An System.Collections.IEnumerator object that can be used to iterate

 // through the collection.

 IEnumerator GetEnumerator();

 }

So, you can easily predict that each concrete iterator needs to implement the

GetEnumerator() method. In the following implementation (demonstration 2), both

concrete iterators define it as follows.

public IEnumerator GetEnumerator()

{

 foreach(string subject in Subjects)

 {

 yield return subject;

 }

}

You may wonder about the yield return. Microsoft discusses it at https://docs.

microsoft.com/en-us/dotnet/csharp/language-reference/keywords/yield.

When you use the yield contextual keyword in a statement, you indicate
that the method, operator, or get accessor in which it appears is an iterator.
Using yield to define an iterator removes the need for an explicit extra class
(the class that holds the state for an enumeration, see IEnumerator<T> for
an example) when you implement the IEnumerable and IEnumerator pat-
tern for a custom collection type.

You use a yield return statement to return each element one at a time. The
sequence returned from an iterator method can be consumed by using a
foreach statement or LINQ query. Each iteration of the foreach loop calls
the iterator method. When a yield return statement is reached in the itera-
tor method, expression is returned, and the current location in code is
retained. Execution is restarted from that location the next time that the
iterator function is called.

These comments are self-explanatory. In short, the foreach of GetEnumerator

can remember where it was after last yield return and can give you the next value.

ChApTEr 18 ITErATor pATTErn

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/yield
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/yield
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerator-1
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerable
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerator
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/foreach-in

350

In the upcoming demonstration, the remaining code is easy to understand. Since the

overall concept and intent are similar to demonstration 1, now you can directly jump to

demonstration 2. Here’s the complete implementation.

using System;

using System.Collections;

using System.Collections.Generic;

namespace SimpleIterator

{

 public class Arts : IEnumerable

 {

 private string[] Subjects;

 public Arts()

 {

 Subjects = new[] { "English", "History", "Geography",

"Psychology" };

 }

 public IEnumerator GetEnumerator()

 {

 foreach (string subject in Subjects)

 {

 yield return subject;

 }

 }

 }

 public class Science : IEnumerable

 {

 private LinkedList<string> Subjects;

 public Science()

 {

 Subjects = new LinkedList<string>();

 Subjects.AddFirst("Mathematics");

 Subjects.AddFirst("Computer Science");

 Subjects.AddFirst("Physics");

ChApTEr 18 ITErATor pATTErn

351

 Subjects.AddFirst("Electronics");

 }

 public IEnumerator GetEnumerator()

 {

 foreach (string subject in Subjects)

 {

 yield return subject;

 }

 }

 }

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Iterator Pattern.A simple demonstration

using built-in constructs.***");

 Arts artsPapers = new Arts();

 Console.WriteLine("\nArts subjects are as follows:");

 /*

 Consume values from the

 collection's GetEnumerator()

 */

 foreach (string subject in artsPapers)

 {

 Console.WriteLine(subject);

 }

 Science sciencePapers = new Science();

 Console.WriteLine("\nScience subjects are as follows:");

 /*

 Consume values from the

 collection's GetEnumerator()

 */

 foreach (string subject in sciencePapers)

 {

ChApTEr 18 ITErATor pATTErn

352

 Console.WriteLine(subject);

 }

 }

 }

}

 Output
Here’s the output.

Iterator Pattern.A simple demonstration using built-in constructs.

Arts subjects are as follows:

English

History

Geography

Psychology

Science subjects are as follows:

Electronics

Physics

Computer Science

Mathematics

 Q&A Session
18.1 What is the Iterator pattern used for?
The following discusses some of its usage.

• You can traverse an object structure without knowing its internal

details. As a result, if you have a collection of different subcollections

(for example, your container is mixed with arrays, lists, linked lists,

and so on), you can still traverse the overall collection and deal with

the elements in a universal way without knowing the internal details

or differences among them.

ChApTEr 18 ITErATor pATTErn

353

• You can traverse a collection in different ways. If they are designed

properly, multiple traversals are also possible in parallel.

18.2 What are the key challenges associated with this pattern?
You must make sure that no accidental modification has taken place during the

traversal procedure.

18.3 But to deal with the challenge mentioned earlier, you can simply take a
backup and then proceed. Am I right?

Taking a backup and re-examining it later is a costly operation.

18.4 In the code, I see a region named Aggregate. Is there any reason behind that
naming?

An aggregate defines an interface to create an Iterator object. I adopted the name

from the GoF book.

18.5 Throughout the discussion, you have talked about collections. What is a
collection?

When you manage (or create) a related group of objects, in C#, you have the

following choices.

• You can consider arrays.

• You can consider collections.

Collections are preferred in many cases because they can grow or shrink

dynamically. In some collections, you can even assign keys to objects so that you can

retrieve them at a later stage more efficiently with those keys. (For example, a dictionary

is such a collection that is often used for fast lookups.) Lastly, a collection is a class, so

before you add elements to it, you need to create instances. Here’s an example.

LinkedList<string> Subjects = new LinkedList<string>();

Subjects.AddLast("Maths");

Subjects.AddLast("Comp. Sc.");

Subjects.AddLast("Physics");

ChApTEr 18 ITErATor pATTErn

354

In this example, instead of AddFirst() method, I used the AddLast() method for a

variation. Both methods are available and in-built in C#. The AddLast() method adds

the node at the end of the LinkedList<T>, whereas the AddFirst() method adds the

node at the beginning of LinkedList<T>.

18.6 In this implementation, you could simply consider using either of the
science or arts subjects to demonstrate an implementation of an Iterator pattern and
reduce the code size. Is this correct?

Yes, and I mentioned it before. But when you use two different data structures, you

may visualize the real power of the Iterator design pattern. So, I kept them both here.

ChApTEr 18 ITErATor pATTErn

355
© Vaskaran Sarcar 2020
V. Sarcar, Design Patterns in C#, https://doi.org/10.1007/978-1-4842-6062-3_19

CHAPTER 19

Memento Pattern
This chapter covers the Memento pattern.

 GoF Definition
Without violating encapsulation, capture and externalize an object’s internal state so that

the object can be restored to this state later.

 Concept
The word memento is a reminder of past events. By following an object-oriented

approach, you can also track (or save) the states of an object. So, whenever you want to

restore an object to its previous state, you can consider using this pattern.

In this pattern, you commonly see three participants: memento, originator, and

caretaker (often used as a client). The working flow can be summarized as follows:

The originator object has an internal state, and a client can set a state in it. To save the

current internal state of the originator, a client (or caretaker) requests a memento from

it. A client can also pass a memento (which it holds) back to the originator to restore a

previous state. By following the proper approach, these saving and restoring operations

do not violate encapsulation.

 Real-World Example
You can see a classic example of the Memento pattern in the states of a finite state

machine. It is a mathematical model, but one of its simplest applications is a turnstile.

A turnstile has some rotating arms, which initially are locked. When you go through it

(for example, putting some coins in), the locks are open, and the arms can rotate. Once

you pass through, the arms return to a locked state.

https://doi.org/10.1007/978-1-4842-6062-3_19#DOI

356

 Computer-World Example
In a drawing application, you may need to revert to an older state. Also, in database

transactions, you may need to roll back some specific transactions. Memento patterns

can be used in those scenarios.

 Implementation
The following are some important suggestions from the GoF.

• A memento saves an originator’s internal state.

• Only the originator should create the mementos. Later it can use a

memento to restore a previous internal state.

• A caretaker class is the container of mementos. This class is used

for memento’s safekeeping, but it never operates or examines the

content of a memento. A caretaker can get the memento from the

originator.

Note In this pattern, the originator sees a wide interface, whereas a caretaker
sees a narrow interface. The caretaker is not allowed to make any changes to
mementos. So, the memento object should be used as an opaque object.

A memento design pattern can have varying implementation using different

techniques. In this chapter, you see two demonstrations. Demonstration 1 is relatively

simple and easy to understand. But it is improved in demonstration 2. In both

implementations, I did not use a separate caretaker class; instead, I used the client code

to play the role of the caretaker.

In demonstration 1, the caretaker holds an Originator object and asks for memento

objects from it. It holds the mementos in a list. So, you see the following lines of code

inside the client.

Originator originatorObject = new Originator();

Memento currentMemento;

IList<Memento> savedStates = new List<Memento>();

/*

ChapTer 19 MeMenTo paTTern

357

Adding a memento the list. This memento stores

the current state of the Originator.

*/

savedStates.Add(originatorObject.CurrentMemento());

The memento class is very simple, and it has a simple getter-setter to get or set the

state of an originator. The class is as follows.

class Memento

 {

 private string state;

 public string State

 {

 get

 {

 return state;

 }

 set

 {

 state = value;

 }

 }

 }

Note From C# 3.0 onward, you can make the code size shorter by using
automatic properties such as public string State { get; set; }.

Apart from the state, the Originator class has a constructor and two methods called

CurrentMemento()and RestoreMemento(...). The first one supplies a memento in

response to a caretaker request and is defined as follows.

 public Memento CurrentMemento()

 {

 myMemento = new Memento();

 myMemento.State = state;

 return myMemento;

 }

ChapTer 19 MeMenTo paTTern

358

The second one restores the originator to a previous state. This state is contained in

a memento (that comes as a method argument) from the caretaker. The caretaker can

send the mementos that it saved earlier. This method is defined as follows.

 public void RestoreMemento(Memento restoreMemento)

 {

 this.state = restoreMemento.State;

 Console.WriteLine($"Restored to state : {state}");

 }

The remaining code is easy but refer to the comments to get a better understanding.

 Class Diagram
Figure 19-1 shows the class diagram.

Figure 19-1. Class diagram

ChapTer 19 MeMenTo paTTern

359

 Solution Explorer View
Figure 19-2 shows the high-level structure of the program.

 Demonstration 1
Here’s the implementation.

using System;

using System.Collections.Generic;

namespace MementoPattern

{

/// <summary>

/// Memento class

Figure 19-2. Solution Explorer view

ChapTer 19 MeMenTo paTTern

360

/// As per GoF:

/// 1.A Memento object stores the snapshot of Originator's

/// internal state.

/// 2.Ideally,only the originator that created a memento is

/// allowed to access it.

/// </summary>

 class Memento

 {

 private string state;

 public string State

 {

 get

 {

 return state;

 }

 set

 {

 state = value;

 }

 }

 /*

 C#3.0 onwards, you can use

 automatic properties as follows:

 public string State { get; set; }

 */

 }

/// <summary>

/// Originator class

/// As per GoF:

/// 1.It creates a memento that contains a snapshot of

/// its current internal state.

/// 2.It uses a memento to restore its internal state.

/// </summary>

ChapTer 19 MeMenTo paTTern

361

 class Originator

 {

 private string state;

 Memento myMemento;

 public Originator()

 {

 //Creating a memento with born state.

 state = "Snapshot #0.(Born state)";

 Console.WriteLine($"Originator's current state is: {state}");

 }

 public string State

 {

 get { return state; }

 set

 {

 state = value;

 Console.WriteLine($"Originator's current state is:

{state}");

 }

 }

 /*

 Originator will supply the memento

 (which contains it's current state)

 in respond to caretaker's request.

 */

 public Memento CurrentMemento()

 {

 myMemento = new Memento();

 myMemento.State = state;

 return myMemento;

 }

ChapTer 19 MeMenTo paTTern

362

 // Back to an old state (Restore)

 public void RestoreMemento(Memento restoreMemento)

 {

 this.state = restoreMemento.State;

 Console.WriteLine($"Restored to state : {state}");

 }

 }

/// <summary>

/// The 'Caretaker' class.

/// As per GoF:

/// 1.This class is responsible for memento's safe-keeping.

/// 2.Never operates or Examines the content of a Memento.

/// Additional notes(for your reference):

/// The originator object has an internal state, and a client can set a

/// state in it.A client(or, caretaker) requests a memento from the

/// originator to save the current internal state of the originator).

/// It can also pass a memento back to the originator to restore it

/// to a previous state that the memento holds in it.This enables to save

/// and restore the internal state of an originator without violating its

/// encapsulation.

/// </summary>

 class Client

 {

 static Originator originatorObject;

 static Memento currentMemento;

 static void Main(string[] args)

 {

 Console.WriteLine("***Memento Pattern Demonstration-1.***\n");

 //Originator is initialized.The constructor will create a

born state.

 originatorObject = new Originator();

 //Memento currentMemento;

 IList<Memento> savedStates = new List<Memento>();

ChapTer 19 MeMenTo paTTern

363

 /*
 Adding a memento the list.This memento stores
 the current state of the Origintor.
 */
 savedStates.Add(originatorObject.CurrentMemento());

 //Snapshot #1.
 originatorObject.State = "Snapshot #1";
 //Adding this memento as a restore point
 savedStates.Add(originatorObject.CurrentMemento());

 //Snapshot #2.
 originatorObject.State = "Snapshot #2";
 //Adding this memento as a restore point
 savedStates.Add(originatorObject.CurrentMemento());

 //Snapshot #3.
 originatorObject.State = "Snapshot #3";
 //Adding this memento as a restore point
 savedStates.Add(originatorObject.CurrentMemento());

 //Snapshot #4. It is not added as a restore point.
 originatorObject.State = "Snapshot #4";

 //Available restore points
 Console.WriteLine("\nCurrently available restore points are :");
 foreach (Memento m in savedStates)
 {
 Console.WriteLine(m.State);
 }

 //Undo's
 //Roll back starts...
 Console.WriteLine("\nPerforming undo's now.");
 for (int i = savedStates.Count; i > 0; i--)
 {
 //Get a restore point
 currentMemento = savedStates[i - 1];
 originatorObject.RestoreMemento(currentMemento);

 }

ChapTer 19 MeMenTo paTTern

364

 //Redo's

 Console.WriteLine("\nPerforming redo's now.");

 for (int i = 1; i < savedStates.Count; i++)

 {

 currentMemento = savedStates[i];

 originatorObject.RestoreMemento(currentMemento);

 }

 // Wait for user

 Console.ReadKey();

 }

 }

}

 Output
Here’s the output.

Memento Pattern Demonstration-1.

Originator's current state is: Snapshot #0.(Born state)

Originator's current state is: Snapshot #1

Originator's current state is: Snapshot #2

Originator's current state is: Snapshot #3

Originator's current state is: Snapshot #4

Currently available restore points are :

Snapshot #0.(Born state)

Snapshot #1

Snapshot #2

Snapshot #3

Performing undo's now.

Restored to state : Snapshot #3

Restored to state : Snapshot #2

Restored to state : Snapshot #1

Restored to state : Snapshot #0.(Born state)

ChapTer 19 MeMenTo paTTern

365

Performing redo's now.

Restored to state : Snapshot #1

Restored to state : Snapshot #2

Restored to state : Snapshot #3

 Analysis
Using the concept of this program, you can use three different variations of undo

operations, as follows.

• You can go back to the previous restore point.

• You can go back to your specified restore point (directly using the

index property). For example, to go back directly to Snapshot #2, you

can use the following lines of code:

//Directly going back to Snapshot #2

 currentMemento = savedStates[2];

 originatorObject.RestoreMemento(currentMemento);

• You can revert all the restore points (which is shown using a for loop

and an index property)

Note If an application is using the Memento pattern and there is a state which
is a mutable reference type, you may see the implementation of a deep copy
technique to store the state inside the Memento object. You learned about deep
copy in Chapter 2.

 Q&A Session
19.1 Can you use a nongeneric version, such as ArrayList, in the previous example?
I like to follow the advice of the experts, who generally prefer generic versions over

nongeneric versions. This is why I like data structures such as List, Dictionary, and so

on, over their counterparts, like ArrayList and HashTable. I discuss generics in detail in

two of my earlier books: Interactive C# (Apress, 2017) and Getting Started with Advanced

C# (Apress, 2020).

ChapTer 19 MeMenTo paTTern

366

19.2 What are the key advantages of using the Memento design pattern?
Here are some of the advantages.

• The biggest advantage is that you can always discard the unwanted

changes and restore them to an intended or stable state.

• You do not compromise with the encapsulation associated with the

key objects that are participating in this model.

• You can maintain high cohesion.

• It provides an easy recovery technique.

19.3 What are the key challenges associated with the Memento design pattern?
Here are some of the disadvantages.

• Having more mementos requires more storage. In addition, they put

an additional burden on a caretaker.

• The previous point increases maintenance costs.

• You cannot ignore the time it takes to save these states, which can

decrease the overall performance of the application.

Note that in a language such as C# or Java, developers may prefer to use

serialization/deserialization techniques instead of directly implementing the Memento

design pattern. Each of these techniques has its pros and cons, but you can combine

both techniques in your application.

19.4 I’m confused. To support undo operations, which pattern should I use—
Memento or Command?

The GoF said that these are related patterns. It primarily depends on how you want

to handle the situation. Suppose you are adding 25 to an integer. After this addition

operation, you can undo it by doing a reverse operation. Simply put, 50 + 25 = 75,

so 75 – 25 = 50. In this type of operation, you do not need to store the previous state.

But consider a situation where you need to store the state of your objects prior to the

operation. In this case, you use Memento. For example, in a paint application, you can

avoid the cost of undoing some painting operations by storing the list of objects before

executing the commands. This stored list can be treated as mementos, and you can keep

this list with the associated commands. A similar concept applies to a long-running

game application that has multiple levels and in which you save your last performance

level. So, an application can use both patterns to support undo operations.

ChapTer 19 MeMenTo paTTern

367

In the end, you must remember that storing a memento object is mandatory in the

Memento pattern so that you can revert to a previous state. In the Command pattern, it

is not necessary to store the commands. Once you execute a command, its job is done.

If you do not support “undo” operations, you may not be interested in storing these

commands at all.

19.5 I understand that a caretaker should not operate on mementos. So,
demonstration 1 is fine. But I see that inside the client code, I can create a Memento
object and set a state using the following lines of code, and no one is blocking me. Is
this correct?

//For Q&A session only(Shouldn't be used)

currentMemento = new Memento();

currentMemento.State = "Arbitrary state set by caretaker";

Good catch. It is the potential drawback of demonstration 1. For a caretaker class, try

to remember the following points from the GoF.

• This class is responsible for the memento’s safekeeping.

• It never operates or examines the content of a memento.

In demonstration 2, I took care of these points. So, go through it; it is a relatively

complicated example.

 Modified Implementation
In this example, I tried to block direct access to a memento from the client code. The

following are some of the important changes.

• The Memento class has a private constructor. As a result, this class

cannot be initialized using a new operator outside.

• The Memento class is nested inside the Originator class and placed

in a separate file (Originator.cs). I also made the Memento class

internal.

• To accommodate these changes, the CurrentMemento() method is

modified as follows:

public Memento CurrentMemento()

ChapTer 19 MeMenTo paTTern

368

{

 //Code segment used in Demonstration-1

 //myMemento = new Memento();//error now

 //myMemento.State = state;

 //return myMemento;

 //Modified code for Demonstration-2

 return new Memento(this.State);

}

The caretaker (client) is very similar to demonstration 1, except this time, you need

to use Originator.Memento instead of Memento. Let’s go through demonstration 2 now.

 Class Diagram
Figure 19-3 shows the modified class diagram. (Note that the association lines can go to

the outermost shapes but not to the nested types in Visual Studio class diagrams.)

Figure 19-3. Class diagram for demonstration 2

ChapTer 19 MeMenTo paTTern

369

 Solution Explorer View
Figure 19-4 shows the modified high-level structure of the program.

 Demonstration 2
Here’s the modified implementation.

//Originator.cs

using System;

namespace MementoPatternDemo2

Figure 19-4. Solution Explorer view of demonstration 2

ChapTer 19 MeMenTo paTTern

370

{

 /// <summary>

 /// Originator class

 /// As per GoF:

 /// 1.It creates a memento that contains a snapshot of its current

/// internal state.

 /// 2.It uses a memento to restore its internal state.

 /// </summary>

 class Originator

 {

 private string state;

 //Memento myMemento;//not needed now

 public Originator()

 {

 //Creating a memento with born state.

 state = "Snapshot #0.(Born state)";

 Console.WriteLine($"Originator's current state is: {state}");

 }

 public string State

 {

 get { return state; }

 set

 {

 state = value;

 Console.WriteLine($"Originator's current state is:

{state}");

 }

 }

 /*

 Originator will supply the memento

 (which contains it's current state)

 in respond to caretaker's request.

 */

 public Memento CurrentMemento()

ChapTer 19 MeMenTo paTTern

371

 {

 //Code segment used in Demonstration-1

 //myMemento = new Memento();

//error now, because of private constructor

 //myMemento.State = state;

 //return myMemento;

 //Modified code for Demonstration-2

 return new Memento(this.State);

 }

 // Back to an old state (Restore)

 public void RestoreMemento(Memento restoreMemento)

 {

 this.state = restoreMemento.State;

 Console.WriteLine($"Restored to state : {state}");

 }

 /// <summary>

 /// Memento class

 /// As per GoF:

 /// 1.A Memento object stores the snapshot of Originator's internal

/// state.

 /// 2.Ideally,only the originator that created a memento is allowed

/// to access it.

 /// </summary>

 internal class Memento

 {

 private string state;

 //Now Memento class cannot be initialized outside

 private Memento() { }

 public Memento(string state)

 {

 this.state = state;

 }

 public string State

 {

ChapTer 19 MeMenTo paTTern

372

 get

 {

 return state;

 }

 set

 {

 state = value;

 }

 }

 }

 }

}

//Client.cs

using System;

using System.Collections.Generic;

namespace MementoPatternDemo2

{

 class Client

 {

 static Originator originatorObject;

 static Originator.Memento currentMemento;

 static void Main(string[] args)

 {

 Console.WriteLine("***Memento Pattern Demonstration-2.***");

 Console.WriteLine("Originator (with nested internal class

'Memento') is maintained in a separate file.\n");

 //Originator is initialized.The constructor will create a

//born state.

 originatorObject = new Originator();

 //Cannot create memento inside client code now

 //currentMemento = new Originator.Memento();

//error:inaccessible

 //currentMemento.State = "test";

//Also error, because previous line cannot be used

ChapTer 19 MeMenTo paTTern

373

 IList<Originator.Memento> savedStates = new List<Originator.

Memento>();

 /*

 Adding a memento the list.This memento stores

 the current state of the Origintor.

 */

 savedStates.Add(originatorObject.CurrentMemento());

 //Snapshot #1.

 originatorObject.State = "Snapshot #1";

 //Adding this memento as a restore point

 savedStates.Add(originatorObject.CurrentMemento());

 //Snapshot #2.

 originatorObject.State = "Snapshot #2";

 //Adding this memento as a restore point

 savedStates.Add(originatorObject.CurrentMemento());

 //Snapshot #3.

 originatorObject.State = "Snapshot #3";

 //Adding this memento as a restore point

 savedStates.Add(originatorObject.CurrentMemento());

 //Snapshot #4. It is not added as a restore point.

 originatorObject.State = "Snapshot #4";

 //Available restore points

 Console.WriteLine("\nCurrently available restore points are :");

 foreach (Originator.Memento m in savedStates)

 {

 Console.WriteLine(m.State);

 }

 //Undo's

 //Roll back starts...

 Console.WriteLine("\nPerforming undo's now.");

 for (int i = savedStates.Count; i > 0; i--)

ChapTer 19 MeMenTo paTTern

374

 {

 //Get a restore point

 currentMemento = savedStates[i - 1];

 originatorObject.RestoreMemento(currentMemento);

 }

 //Redo's

 Console.WriteLine("\nPerforming redo's now.");

 for (int i = 1; i < savedStates.Count; i++)

 {

 currentMemento = savedStates[i];

 originatorObject.RestoreMemento(currentMemento);

 }

 // Wait for user

 Console.ReadKey();

 }

 }

}

 Output
Here is the output. You can see that apart from the initial console messages, the output

of demonstration 1 and demonstration 2 are the same, but programmatically, I put more

constraints in this example.

Memento Pattern Demonstration-2.

Originator (with nested internal class 'Memento') is maintained in a

separate file.

Originator's current state is: Snapshot #0.(Born state)

Originator's current state is: Snapshot #1

Originator's current state is: Snapshot #2

Originator's current state is: Snapshot #3

Originator's current state is: Snapshot #4

Currently available restore points are :

Snapshot #0.(Born state)

Snapshot #1

ChapTer 19 MeMenTo paTTern

375

Snapshot #2

Snapshot #3

Performing undo's now.

Restored to state : Snapshot #3

Restored to state : Snapshot #2

Restored to state : Snapshot #1

Restored to state : Snapshot #0.(Born state)

Performing redo's now.

Restored to state : Snapshot #1

Restored to state : Snapshot #2

Restored to state : Snapshot #3

ChapTer 19 MeMenTo paTTern

377
© Vaskaran Sarcar 2020
V. Sarcar, Design Patterns in C#, https://doi.org/10.1007/978-1-4842-6062-3_20

CHAPTER 20

State Pattern
This chapter covers the State pattern.

 GoF Definition
Allow an object to alter its behavior when its internal state changes. The object will

appear to change its class.

 Concept
The GoF definition is easy to understand. It simply states that an object can change what

it does based on its current state.

Suppose that you are dealing with a large-scale application where the codebase

is rapidly growing. As a result, the situation becomes complex, and you may need to

introduce lots of if-else blocks/switch statements to guard the various conditions. The

State pattern fits in such a context. It allows your objects to behave differently based on

their current state, and you can define state-specific behaviors with different classes.

In this pattern, you think in terms of your application’s possible states, and you

segregate the code accordingly. Ideally, each of the states is independent of other states.

You keep track of these states, and your code responds according to the behavior of the

current state. For example, suppose that you are watching a program on your television (TV).

Now, if you press the Mute button on the TV’s remote control, there is a state change on

your TV. But there is no change if the TV is already in a switched-off mode.

So, the basic idea is that if your code can track the current state of the application,

you can centralize the task, segregate your code, and respond accordingly.

https://doi.org/10.1007/978-1-4842-6062-3_20#DOI

378

 Real-World Example
Consider a scenario for a network connection, such as a TCP connection. An object can

be in various states; for example, a connection might be just established, a connection

might be closed, or the object is listening through the connection. When this connection

receives a request from other objects, it responds according to its present state.

The functionalities of a traffic signal or television are other examples of the State

pattern. For example, you can change the channel if the TV is already in switched-on

mode. It does not respond to the channel change requests if it is in switched-off mode.

 Computer-World Example
The TCP connection example can fit into this category. Consider another example.

Suppose that you have a job-processing system that can process a certain number of

jobs at a time. When a new job appears, either the system processes the job, or it signals

that it is busy with the maximum number of jobs that it can process at that time. This

busy signal simply indicates that its total number of job-processing capabilities has been

reached, and the new job request cannot be fulfilled immediately.

 Implementation
This example models the functionalities related to a TV, which has a control panel to

support on, off, and mute operations. For simplicity, assume that at any given time, the

TV is in any of these three states: On, Off, or Mute. The following shows an interface

called IPossibleStates.

 interface IPossibleStates

 {

 //Users can press any of these buttons-On, Off or Mute

 void PressOnButton(TV context);

 void PressOffButton(TV context);

 void PressMuteButton(TV context);

 }

Chapter 20 State pattern

379

Three concrete classes—On, Off, and Mute—implement this interface. The basic

functionality can be described as follows. Initially, the TV is in the Off state. So, when you

press the On button on the control panel, the TV moves to the On state, and then if you

press the Mute button, it goes into the Mute state.

Assume that if you press the Off button when the TV is in the Off state; if you press

the On button when the TV is in the On state; or if you press the Mute button when the

TV is in Mute mode, there is no state change to the TV. The TV can go into the Off state

from the On state or the Mute state (when you press the Off button). Figure 20-1 is a state

diagram that reflects all possible scenarios.

Figure 20-1. Different states of a TV

Chapter 20 State pattern

380

POINTS TO REMEMBER

• In this diagram, I did not mark any state as the final state, although in

Figure 20-1, I switch to turn off the tV.

• to make the design simpler, assume that if you press the Off (or Mute) button

when the tV is in the Off state; or if you press the On button when the tV is

in the On state; or if you press the Mute button when the tV is in Mute mode,

there is no state change to the tV. But in the real world, a remote control may

work differently. For example, if the tV is currently in the On state and you press

the Mute button, the tV goes into Mute mode; and if press the Mute button

again, the tV may return to On state. So, you may need to update your program

logic accordingly.

The TV has a control panel to support on, off, and mute operations. So, inside the

TV class, there are three methods: ExecuteOffButton(), ExecuteOnButton(), and

ExecuteMuteButton() as follows.

 public void ExecuteOffButton()

 {

 Console.WriteLine("You pressed Off button.");

 //Delegating the state behavior

 currentState.PressOffButton(this);

 }

 public void ExecuteOnButton()

 {

 Console.WriteLine("You pressed On button.");

 //Delegating the state behavior

 currentState.PressOnButton(this);

 }

 public void ExecuteMuteButton()

 {

 Console.WriteLine("You pressed Mute button.");

 //Delegating the state behavior

 currentState.PressMuteButton(this);

 }

Chapter 20 State pattern

381

I delegated the state behavior. For example, when you press ExecuteMuteButton(),

the control invokes PressMuteButton(...) based on the current state of the television.

Let’s follow the class diagram now.

 Class Diagram
Figure 20-2 shows the important parts of the class diagram.

 Solution Explorer View
Figure 20-3 shows the high-level structure of the program.

Figure 20-2. Class diagram

Chapter 20 State pattern

382

Figure 20-3. Solution Explorer view

Chapter 20 State pattern

383

 Demonstration
Here’s the complete implementation.

using System;

namespace StatePattern

{

 interface IPossibleStates

 {

 //Users can press any of these buttons-On, Off or Mute

 void PressOnButton(TV context);

 void PressOffButton(TV context);

 void PressMuteButton(TV context);

 }

 //Subclasses does not contain any local state.

 //Only one unique instance of IPossibleStates is required.

 /// <summary>

 /// Off state behavior

 /// </summary>

 class Off : IPossibleStates

 {

 public Off()

 {

 Console.WriteLine("---TV is Off now.---\n");

 }

 //TV is Off now, user is pressing On button

 public void PressOnButton(TV context)

 {

 Console.WriteLine("TV was Off.Going from Off to On state.");

 context.CurrentState = new On();

 }

Chapter 20 State pattern

384

 //TV is Off already, user is pressing Off button again

 public void PressOffButton(TV context)

 {

 Console.WriteLine("TV was already in Off state.So, ignoring

this opeation.");

 }

 //TV is Off now, user is pressing Mute button

 public void PressMuteButton(TV context)

 {

 Console.WriteLine("TV was already off.So, ignoring this

operation.");

 }

 }

 /// <summary>

 /// On state behavior

 /// </summary>

 class On : IPossibleStates

 {

 public On()

 {

 Console.WriteLine("---TV is On now.---\n");

 }

 //TV is On already, user is pressing On button again

 public void PressOnButton(TV context)

 {

 Console.WriteLine("TV is already in On state.Ignoring repeated

on button press operation.");

 }

 //TV is On now, user is pressing Off button

 public void PressOffButton(TV context)

 {

 Console.WriteLine("TV was on.So,switching off the TV.");

 context.CurrentState = new Off();

 }

Chapter 20 State pattern

385

 //TV is On now, user is pressing Mute button

 public void PressMuteButton(TV context)

 {

 Console.WriteLine("TV was on.So,moving to silent mode.");

 context.CurrentState = new Mute();

 }

 }

 /// <summary>

 /// Mute state behavior

 /// </summary>

 class Mute : IPossibleStates

 {

 public Mute()

 {

 Console.WriteLine("---TV is in Mute mode now.---\n");

 }

 /*

 Users can press any of these buttons at this state-On, Off or Mute.

TV is in mute, user is pressing On button.

 */

 public void PressOnButton(TV context)

 {

 Console.WriteLine("TV was in mute mode.So, moving to normal

state.");

 context.CurrentState = new On();

 }

 //TV is in mute, user is pressing Off button

 public void PressOffButton(TV context)

 {

 Console.WriteLine("TV was in mute mode. So, switching off the

TV.");

 context.CurrentState = new Off();

 }

Chapter 20 State pattern

386

 //TV is in mute already, user is pressing mute button again

 public void PressMuteButton(TV context)

 {

 Console.WriteLine(" TV is already in Mute mode, so, ignoring

this operation.");

 }

 }

 /// <summary>

 /// TV is the context class

 /// </summary>

 class TV

 {

 private IPossibleStates currentState;

 public IPossibleStates CurrentState

 {

 get

 {

 return currentState;

 }

 /*

 Usually this value will be set by the class that implements the

interface "IPossibleStates"

 */

 set

 {

 currentState = value;

 }

 }

 public TV()

 {

 //Starting with Off state

 this.currentState = new Off();

 }

Chapter 20 State pattern

387

 public void ExecuteOffButton()

 {

 Console.WriteLine("You pressed Off button.");

 //Delegating the state behavior

 currentState.PressOffButton(this);

 }

 public void ExecuteOnButton()

 {

 Console.WriteLine("You pressed On button.");

 //Delegating the state behavior

 currentState.PressOnButton(this);

 }

 public void ExecuteMuteButton()

 {

 Console.WriteLine("You pressed Mute button.");

 //Delegating the state behavior

 currentState.PressMuteButton(this);

 }

 }

 /// <summary>

 /// Client code

 /// </summary>

 class Client

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***State Pattern Demo***\n");

 //TV is initialized with Off state.

 TV tv = new TV();

 Console.WriteLine("User is pressing buttons in the following

sequence:");

 Console.WriteLine("Off->Mute->On->On->Mute->Mute->Off\n");

 //TV is already in Off state

 tv.ExecuteOffButton();

Chapter 20 State pattern

388

 //TV is already in Off state, still pressing the Mute button

 tv.ExecuteMuteButton();

 //Making the TV on

 tv.ExecuteOnButton();

 //TV is already in On state, pressing On button again

 tv.ExecuteOnButton();

 //Putting the TV in Mute mode

 tv.ExecuteMuteButton();

 //TV is already in Mute, pressing Mute button again

 tv.ExecuteMuteButton();

 //Making the TV off

 tv.ExecuteOffButton();

 // Wait for user

 Console.Read();

 }

 }

}

 Output
Here’s the output.

State Pattern Demo

---TV is Off now.---

User is pressing buttons in the following sequence:

Off->Mute->On->On->Mute->Mute->Off

You pressed Off button.

TV was already in Off state.So, ignoring this opeation.

You pressed Mute button.

TV was already off.So, ignoring this operation.

You pressed On button.

TV was Off.Going from Off to On state.

---TV is On now.---

Chapter 20 State pattern

389

You pressed On button.

TV is already in On state.Ignoring repeated on button press operation.

You pressed Mute button.

TV was on.So,moving to silent mode.

---TV is in Mute mode now.---

You pressed Mute button.

 TV is already in Mute mode, so, ignoring this operation.

You pressed Off button.

TV was in mute mode. So, switching off the TV.

---TV is Off now.---

 Q&A Session
20.1 Can you elaborate on how this pattern works in a real-world scenario?
Psychologists have repeatedly documented the fact that human beings can perform

their best when they are in a relaxed mood. In the reverse scenario, however, when their

minds are filled with tension, they cannot produce great results. That is why they always

suggest you working in a relaxed mood. So, the same work can be enjoyable or boring,

depending on your current mood.

You can think about our demonstration example again. Suppose that you want to

watch the live telecast of the winning moments of your favorite team. To watch and enjoy

the moment, you need to power on the TV first. If the TV is not functioning properly at

that moment and cannot be in the On state, you cannot enjoy the moment. So, if you

want to enjoy the moment through your TV, the first criterion is that the TV should

change its state from Off to On. The State pattern is helpful if you want to design a similar

kind of behavior change in an object when its internal state changes.

20.2 In this example, you have considered only three states of a TV: On, Off, and
Mute. There can be many other states; for example, there may be a state that deals
with connection issues or different display conditions. Why have you ignored those
issues?

The straightforward answer is I ignored those states to keep things simple. If the

number of states increases significantly in the system, then it becomes difficult to maintain

the system (and this is one of the key challenges associated with this design pattern). But if

you understand this implementation, you can easily add any states that you want.

Chapter 20 State pattern

390

20.3 I noticed that the GoF represented a similar structure for both the State
pattern and the Strategy pattern in their famous book. I’m confused by that.

Yes, the structures are similar, but you need to remember that their intents are

different. When you use the Strategy pattern, you are getting a better alternative to

subclassing. In a State design pattern, different types of behaviors can be encapsulated

in a state object, and the context is delegated to any of these states. When a context’s

internal state changes, its behavior also changes. So, the State pattern can be thought of

as a dynamic version of the Strategy pattern.

State patterns can also help you avoid a lot of if conditions in some contexts. For

example, if a TV is in the Off state, it cannot go into the Mute state. From this state, it can

move to the On state only. So, if you do not like the State design pattern, you may need to

write the code like this.

class TV

{

//Some code before

public void ExecuteOnButton()

{

if(currentState==Off)

{

Console.WriteLine("You pressed On button. Going from Off to OnState");

//Some code after

}

if(currentState==On)

{

Console.WriteLine("You pressed On button. TV is already in on state.

So, ignoring this opeation.");

//Some code after

}

else

{

Console.WriteLine("TV was on. Moving into mute mode now.");

}

//Some code after

}

Chapter 20 State pattern

391

You need to repeat these checks for different kinds of button presses (For example,

for the ExecuteOffButton() and ExecuteMuteButton() method, you need to repeat

these checks and program accordingly). So, if you do not think in terms of states, over

time, handling different conditions with a lot of if-else is very challenging, and it can

be difficult when the codebase continually grows.

20.4 How are you implementing the open/close principle in your example?
Each of these TV states is closed for modification, but you can add a new state to the

TV class.

20.5 What are the common characteristics between the Strategy pattern and the
State pattern?

The State pattern can be considered as a dynamic Strategy pattern. Both patterns

promote composition and delegation.

20.6 It appears to me that these state objects are acting like singletons. Is this
correct?

Yes, it’s a nice observation. The concrete subclasses of IPossibleStates do not contain

any local state in this example, and as a result, in this application, only one state instance

is working. Most of the time, this pattern acts similarly.

20.7 Why are you using context as a method parameter? Can you avoid them in
statements like this?

void PressOnButton(TV context);

Using the context, I’m saving states. Also, the concrete subclasses of IPossibleStates

do not contain any local state. So, in this application, only one state instance is working.

So, this construct helps you evaluate whether you are changing between states or you are

already in the same state. Note the output. These contexts help you get output like the

following.

"You pressed Mute button.

TV was already off.So, ignoring this operation."

Chapter 20 State pattern

392

20.8 What are the pros and cons of the State design pattern?
The advantages are as follows.

• You have seen that by following the open/close principle, you can

add new states and extend a state’s behavior easily. Also, a state

behavior can be extended without hassle. For example, in this

implementation, you can add a new state and new behavior for a TV

class without changing the TV class itself.

• It reduces if-else statements. In other words, conditional

complexity is reduced. (Refer to the answer to question 20.3.)

There is a downside to using this pattern.

• The State pattern is also known as Objects for States, so you can

assume that more states need more code, and the obvious side effect

is more difficult maintenance.

20.9 In these implementations, TV is a concrete class. Why are you not
programming to interface in this case?

I assume that the TV class is not going to change and so ignored that part to reduce

some code size of the program. But yes, you can always start from an interface, for

example, ITv, in which you can define the contracts.

20.10 In the TV class constructor, you are initializing the TV with an Off state.
So, both states and the context class can trigger the state transitions?

Yes.

Chapter 20 State pattern

393
© Vaskaran Sarcar 2020
V. Sarcar, Design Patterns in C#, https://doi.org/10.1007/978-1-4842-6062-3_21

CHAPTER 21

Mediator Pattern
This chapter covers the Mediator pattern.

 GoF Definition
Define an object that encapsulates how a set of objects interact. Mediator promotes

loose coupling by keeping objects from referring to each other explicitly, and it lets you

vary their interaction independently.

 Concept
A mediator is an intermediary through whom a group of objects communicates, but they

cannot refer to each other directly. The mediator takes responsibility for controlling and

coordinating the interactions among them. As a result, you can reduce the direct number

of interconnections among different objects. So, using this pattern, you can reduce the

coupling in an application.

 Real-World Example
When an airplane needs to take off, a series of verifications take place. These kinds of

verifications confirm that all components and individual parts (which can be dependent

on each other) are in perfect condition.

Another example is when the pilots of different airplanes (who are approaching or

departing the terminal area) communicate with the airport towers. They do not explicitly

communicate with other pilots in different airlines. They simply send their status to the

controlling tower only. These towers send signals to confirm who can take off (or land).

You must note that these towers do not control the whole flight. They enforce constraints

only in the terminal areas.

https://doi.org/10.1007/978-1-4842-6062-3_21#DOI

394

 Computer-World Example
When a client processes a business application, you may need to implement some

constraints. For example, suppose you have a form where clients need to supply their

user IDs and passwords to access their accounts. In the same form, you may need to

supply other mandatory fields such as email ID, communication address, age, and so on.

Let’s assume you are applying the constraints as follows.

Initially, you check whether the user ID supplied by a user is a valid one. If it is a

valid ID, then only the password field is enabled. After supplying these two fields, you

may need to check whether the user provides an email ID. Let’s further assume that

after providing all this information (a valid user ID, a password, a correctly formatted

email ID, and so on), your Submit button is enabled. In other words, the Submit button

is enabled if the user supplies a valid user ID, password, a valid email ID, and other

mandatory details. You can also ensure that the user ID is an integer, so if a user by

mistake provides any character in that field, the Submit button stays in disabled mode.

The Mediator pattern becomes handy in such a scenario.

In short, when a program consists of many classes, and the logic is distributed

among them, the code becomes harder to read and maintain. In those scenarios, if you

want to bring new changes to the system’s behavior, it can be difficult unless you use the

Mediator pattern.

 Implementation
Wikipedia describes the Mediator pattern, as shown in Figure 21-1 (which is adopted

from the GoF).

Chapter 21 Mediator pattern

395

The participants are described as follows.

• Mediator: This defines the interface that provides communication

among Colleague objects.

• ConcreteMediator: This knows and maintains the list of Colleague

objects. It implements the Mediator interface and coordinates the

communication among the Colleague objects.

• Colleague: This defines the interface for communication with other

colleagues.

• ConcreteColleague(s): A concrete colleague must implement the

Colleague interface. These objects communicate with each other

through the mediator.

In demonstration 1, I replaced Colleague and ConcreteColleague(s) with

AbstractFriend and Friend. (Yes, you can assume that it is a friendly environment.)

In this example, there are three participants named Amit, Sohel, and Joseph, who

communicate with each other through a chat server. The chat server plays the role of a

mediator in this scenario.

In the following example, IMediator is the interface and defined with comments that

are easy to understand.

interface IMediator

{

 // To register a friend

 void Register(AbstractFriend friend);

Figure 21-1. Mediator pattern example

Chapter 21 Mediator pattern

396

 // To send a message from one friend to another friend

 void Send(AbstractFriend fromFriend, AbstractFriend toFriend,string

msg);

 // To display currently registered objects/friends.

 void DisplayDetails();

}

The ConcreteMediator class implements this interface, and this class maintains

the list of registered participants. So, inside this class, you also see the following lines of

code.

// List of friends

List<AbstractFriend> participants = new List<AbstractFriend>();

Apart from this, the mediator allows only registered users to communicate with each

other and post messages successfully. So, the Send() method in the ConcreteMediator

class checks whether both the sender and receiver are registered users. The method is

defined as follows.

public void Send(AbstractFriend fromFriend, AbstractFriend toFriend,string

msg)

{

 // Verifying whether the sender is a registered user or not.

 if (participants.Contains(fromFriend))

 {

 // Verifying whether the receiver is a registered user or not.

 if (participants.Contains(toFriend))

 {

 Console.WriteLine($"\n[{fromFriend.Name}] posts: {msg}

Last message posted {DateTime.Now}");

 System.Threading.Thread.Sleep(1000);

 // Target receiver will receive this message.

 toFriend.ReceiveMessage(fromFriend, msg);

 }

Chapter 21 Mediator pattern

397

 // Target receiver is NOT a registered user

 else

 {

 Console.WriteLine($"\n{fromFriend.Name}, you cannot

send message to {toFriend.Name} because he is NOT a

registered user.");

 }

 }

 // Message sender is NOT a registered user

 else

 {

 Console.WriteLine($"\nAn outsider named {fromFriend.Name}

of [{fromFriend.GetType()}] is trying to send a message to

{toFriend.Name}.");

 }

 }

In this example, there is another inheritance hierarchy, in which I use

AbstractFriend as an abstract class so that you cannot directly instantiate it. Instead,

you can instantiate objects from the concrete classes Friend or Stranger, which inherit

from AbstractFriend. This inheritance hierarchy is as follows.

/// <summary>

/// AbstractFriend class

/// Making it an abstract class, so that you cannot instantiate it directly.

/// </summary>

 abstract class AbstractFriend

 {

 IMediator mediator;

 // Using auto property

 public string Name { get; set; }

Chapter 21 Mediator pattern

398

 // Constructor

 public AbstractFriend(IMediator mediator)

 {

 this.mediator = mediator;

 }

 public void SendMessage(AbstractFriend toFriend,string msg)

 {

 mediator.Send(this,toFriend, msg);

 }

 public void ReceiveMessage(AbstractFriend fromFriend, string msg)

 {

 Console.WriteLine($"{this.Name} has received a message from

{fromFriend.Name} saying: {msg} ");

 }

 }

 /// <summary>

 /// Friend class

 /// </summary>

 class Friend : AbstractFriend

 {

 // Constructor

 public Friend(IMediator mediator)

 : base(mediator)

 {

 }

 }

 /// <summary>

 /// Another class called Stranger

 /// </summary>

 class Stranger : AbstractFriend

 {

 // Constructor

Chapter 21 Mediator pattern

399

 public Stranger(IMediator mediator)

 : base(mediator)

 {

 }

 }

Note Following the core architecture of a basic Mediator pattern, i used two
different concrete classes to demonstrate the fact that you should not assume that
the communicating objects should be from the same class only.

In the client code, you see the following participants: two from the Friend class and

one from the Stranger class.

// 3 persons-Amit,Sohel,Joseph

// Amit and Sohel from Friend class

Friend friend1 = new Friend(mediator);

friend1.Name = "Amit";

Friend friend2 = new Friend(mediator);

friend2.Name = "Sohel";

// Joseph is from Stranger class

Stranger stranger1 = new Stranger(mediator);

stranger1.Name = "Joseph";

These people can communicate among them through a chat server. So, before

passing the messages, they first register themselves to the chat server as follows.

// Registering the participants

mediator.Register(friend1);

mediator.Register(friend2);

mediator.Register(stranger1);

At the end of the program, I introduced two people: Todd and Jack. Todd is a Friend

class object, and Jack is a Stranger class object. But neither of them registered with the

mediator object; so the mediator is not allowing them to post messages to the desired

object.

Chapter 21 Mediator pattern

400

Jack can send the message properly if he registers with the mediator before sending a

message, as follows.

mediator.Register(stranger1); // Disabled in Demonstration1

stranger1.SendMessage(friend3,"Hello friend...");

And the same comment applies for Todd too.

 Class Diagram
Figure 21-2 shows the important parts of the class diagram.

Figure 21-2. Class diagram

Chapter 21 Mediator pattern

401

 Solution Explorer View
Figure 21-3 shows the high-level structure of the program.

 Demonstration 1
Here’s the complete demonstration.

using System;

using System.Collections.Generic;

Figure 21-3. Solution Explorer view

Chapter 21 Mediator pattern

402

namespace MediatorPattern

{

 interface IMediator

 {

 // To register a friend

 void Register(AbstractFriend friend);

 // To send a message from one friend to another friend

 void Send(AbstractFriend fromFriend, AbstractFriend toFriend,

string msg);

 // To display currently registered objects/friends.

 void DisplayDetails();

 }

 // ConcreteMediator

 class ConcreteMediator : IMediator

 {

 // List of friends

 List<AbstractFriend> participants = new List<AbstractFriend>();

 public void Register(AbstractFriend friend)

 {

 participants.Add(friend);

 }

 public void DisplayDetails()

 {

 Console.WriteLine("Current list of registered participants is

as follows:");

 foreach (AbstractFriend friend in participants)

 {

 Console.WriteLine($"{friend.Name}");

 }

 }

 /*

 The mediator allows only registered users

 to communicate each other and post messages

 successfully. So, the following method

Chapter 21 Mediator pattern

403

 checks whether both the sender and receiver

 are registered users or not.

 */

 public void Send(AbstractFriend fromFriend, AbstractFriend

toFriend, string msg)

 {

 // Verifying whether the sender is a registered user or not

 if (participants.Contains(fromFriend))

 {

 /* Verifying whether the receiver is a registered user or

not */

 if (participants.Contains(toFriend))

 {

 Console.WriteLine($"\n[{fromFriend.Name}] posts: {msg}

Last message posted {DateTime.Now}");

 System.Threading.Thread.Sleep(1000);

 /* Target receiver will receive this message.*/

 toFriend.ReceiveMessage(fromFriend, msg);

 }

 else

 {

 Console.WriteLine($"\n{fromFriend.Name}, you cannot

send message to {toFriend.Name} because he is NOT a

registered user.");

 }

 }

 // Message sender is NOT a registered user.

 else

 {

 Console.WriteLine($"\nAn outsider named {fromFriend.Name}

of [{fromFriend.GetType()}] is trying to send a message to

{toFriend.Name}.");

 }

 }

 }

Chapter 21 Mediator pattern

404

 /// <summary>

 /// AbstractFriend class

 /// Making it an abstract class, so that you cannot instantiate it directly.

 /// </summary>

 abstract class AbstractFriend

 {

 IMediator mediator;

 // Using auto property

 public string Name { get; set; }

 // Constructor

 public AbstractFriend(IMediator mediator)

 {

 this.mediator = mediator;

 }

 public void SendMessage(AbstractFriend toFriend, string msg)

 {

 mediator.Send(this, toFriend, msg);

 }

 public void ReceiveMessage(AbstractFriend fromFriend, string msg)

 {

 Console.WriteLine($"{this.Name} has received a message from

{fromFriend.Name} saying: {msg} ");

 }

 }

 /// <summary>

 /// Friend class

 /// </summary>

 class Friend : AbstractFriend

 {

 // Constructor

Chapter 21 Mediator pattern

405

 public Friend(IMediator mediator)

 : base(mediator)

 {

 }

 }

 /// <summary>

 /// Another class called Stranger

 /// </summary>

 class Stranger : AbstractFriend

 {

 // Constructor

 public Stranger(IMediator mediator)

 : base(mediator)

 {

 }

 }

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Mediator Pattern Demonstration.***\n");

 IMediator mediator = new ConcreteMediator();

 //AbstractFriend afriend = new AbstractFriend(mediator);//error

 // 3 persons-Amit, Sohel, Joseph

 // Amit and Sohel from Friend class

 Friend friend1 = new Friend(mediator);

 friend1.Name = "Amit";

 Friend friend2 = new Friend(mediator);

 friend2.Name = "Sohel";

 // Joseph is from Stranger class

 Stranger stranger1 = new Stranger(mediator);

 stranger1.Name = "Joseph";

Chapter 21 Mediator pattern

406

 // Registering the participants

 mediator.Register(friend1);

 mediator.Register(friend2);

 mediator.Register(stranger1);

 // Displaying the participant's list

 mediator.DisplayDetails();

 Console.WriteLine("Communication starts among

participants...");

 friend1.SendMessage(friend2, "Hi Sohel, can we discuss the

mediator pattern?");

 friend2.SendMessage(friend1, "Hi Amit, Yup, we can discuss

now.");

 stranger1.SendMessage(friend1, " How are you?");

 // Another friend who does not register to the mediator

 Friend friend4 = new Friend(mediator);

 friend4.Name = "Todd";

 /*

 Todd is NOT a registered user.

 So,he cannot send this message to Joseph.

 */

 friend4.SendMessage(stranger1, "Hello Joseph...");

 /*

 Todd is NOT a registered user.

 So,he cannot receive this message from Amit.

 */

 friend1.SendMessage(friend4, "Hello Todd...");

 // An outsider person tries to participate

 Stranger stranger2 = new Stranger(mediator);

 stranger2.Name = "Jack";

 //mediator.Register(stranger1);

 // This message cannot reach Joseph, because Jack

 // is not the registered user.

 stranger2.SendMessage(stranger1, "Hello friend...");

Chapter 21 Mediator pattern

407

 // Wait for user

 Console.Read();

 }

 }

}

 Output
Here’s the output.

Mediator Pattern Demonstration.

Current list of registered participants is as follows:

Amit

Sohel

Joseph

Communication starts among participants...

[Amit] posts: Hi Sohel, can we discuss the mediator pattern?Last message

posted 15-05-2020 11:13:08

Sohel has received a message from Amit saying: Hi Sohel, can we discuss the

mediator pattern?

[Sohel] posts: Hi Amit, Yup, we can discuss now. Last message posted 15-05-

2020 11:13:09

Amit has received a message from Sohel saying: Hi Amit, Yup, we can discuss

now.

[Joseph] posts: How are you? Last message posted 15-05-2020 11:13:10

Amit has received a message from Joseph saying: How are you?

An outsider named Todd of [MediatorPattern.Friend] is trying to send a

message to Joseph.

Amit, you cannot send message to Todd because he is NOT a registered user.

An outsider named Jack of [MediatorPattern.Stranger] is trying to send a

message to Joseph.

Chapter 21 Mediator pattern

408

 Analysis
Note that only registered users can communicate with each other and post messages

successfully. The mediator is not allowing any outsider in the system. (Notice the last few

lines of the output).

POINT TO REMEMBER

You should not assume that there should always be one-to-one communication. it is because

the GoF states that a mediator replaces many-to-many interactions with one-to-many

interactions. But in this chapter, i assume that all the messages are private and should not be

broadcasted to everyone; so, i gave an example where the mediator is sending the messages

to intended receivers only. the mediator is broadcasting the messages to warn others only

when an outsider is trying to post messages in the chat server.

 Q&A Session
21.1 Why are you complicating things? In the previous example, each of the

participants could talk to each other directly, and you could bypass the mediator.
Is this correct?

In this example, you have only three registered participants, and the mediator allows

them only to communicate with each other. So, it may appear that since there are only

three participants, they could communicate with each other directly. But think about a

more complicated scenario, and let’s add another constraint to this application, which

states that a participant can send a message to a target participant if and only if the

target participant stays in online mode only (which is the common scenario for a chat

server). If you do not use the mediator pattern, it is not sufficient to check whether the

participant is a valid user; in addition to this, you need to check the target recipient’s

online status before you post a message. And if the number of participants keeps

growing, can you imagine the complexity of the system? So, a mediator can rescue you

from such a scenario because you can put all the validation criteria inside the mediator.

Figures 21-4 and 21-5 depict the scenario better.

Chapter 21 Mediator pattern

409

 Modified Implementation
In the modified example, a participant can send messages to another participant if both

are registered users, and the receiver is online only. The mediator takes care of sending

the messages to the correct destination, but before it sends a message, the participant’s

online status is known to him.

Figure 21-5 hints that in similar scenarios, the mediator can check the status of all

the objects and maintain the logic of sending the messages. So, let’s modify the program.

Notice that I added a state for each participant. So, you see this new code segment inside

the AbstractFriend class.

Figure 21-5. Case 2: With a mediator

Figure 21-4. Case 1: Without using a mediator

Chapter 21 Mediator pattern

410

// New property for Demonstration 2

public string Status { get; set; }

 Demonstration 2
Here’s the modified implementation.

using System;

using System.Collections.Generic;

namespace MediatorPatternModifiedDemo

{

 interface IMediator

 {

 // To register a friend

 void Register(AbstractFriend friend);

 // To send a message from one friend to another friend

 void Send(AbstractFriend fromFriend, AbstractFriend toFriend,

string msg);

 // To display currently registered objects/friends.

 void DisplayDetails();

 }

 // ConcreteMediator

 class ConcreteMediator : IMediator

 {

 // List of friends

 List<AbstractFriend> participants = new List<AbstractFriend>();

 public void Register(AbstractFriend friend)

 {

 participants.Add(friend);

 }

 public void DisplayDetails()

 {

 Console.WriteLine("Current list of registered participants is

as follows:");

 foreach (AbstractFriend friend in participants)

 {

Chapter 21 Mediator pattern

411

 Console.WriteLine($"{friend.Name}");

 }

 }

 /*

 The mediator allows only registered users

 to communicate with each other and post messages

 successfully. So, the following method

 checks whether both the sender and receiver

 are registered users or not.

 */

 public void Send(AbstractFriend fromFriend, AbstractFriend

toFriend, string msg)

 {

 // Verifying whether the sender is a registered user or not.

 if (participants.Contains(fromFriend))

 {

 /* Verifying whether the receiver is a registered user and

he is online.*/

 if (participants.Contains(toFriend) && toFriend.

Status=="On")

 {

 Console.WriteLine($"\n[{fromFriend.Name}] posts: {msg}

Last message posted {DateTime.Now}");

 System.Threading.Thread.Sleep(1000);

 //Target receiver will receive this message.

 toFriend.ReceiveMessage(fromFriend, msg);

 }

 else

 {

 Console.WriteLine($"\n{fromFriend.Name},at this moment,

you cannot send message to {toFriend.Name} because he

is either not a registered user or he is currently

offline.");

 }

 }

Chapter 21 Mediator pattern

412

 //Message sender is NOT a registered user.

 else

 {

 Console.WriteLine($"\nAn outsider named {fromFriend.Name}

of [{fromFriend.GetType()}] is trying to send a message to

{toFriend.Name}.");

 }

 }

 }

 /// <summary>

 /// AbstractFriend class

 /// Making it an abstract class, so that you cannot instantiate it

/// directly.

 /// </summary>

 abstract class AbstractFriend

 {

 IMediator mediator;

 // Using auto property

 public string Name { get; set; }

 // New property for Demonstration 2

 public string Status { get; set; }

 // Constructor

 public AbstractFriend(IMediator mediator)

 {

 this.mediator = mediator;

 }

 public void SendMessage(AbstractFriend toFriend, string msg)

 {

 mediator.Send(this, toFriend, msg);

 }

 public void ReceiveMessage(AbstractFriend fromFriend, string msg)

 {

 Console.WriteLine($"{this.Name} has received a message from

{fromFriend.Name} saying: {msg} ");

Chapter 21 Mediator pattern

413

 }

 }

 /// <summary>

 /// Friend class

 /// </summary>

 class Friend : AbstractFriend

 {

 // Constructor

 public Friend(IMediator mediator)

 : base(mediator)

 {

 }

 }

 /// <summary>

 /// Another class called Stranger

 /// </summary>

 class Stranger : AbstractFriend

 {

 // Constructor

 public Stranger(IMediator mediator)

 : base(mediator)

 {

 }

 }

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Mediator Pattern Modified

Demonstration.***\n");

 IMediator mediator = new ConcreteMediator();

 //AbstractFriend afriend = new AbstractFriend(mediator);//error

Chapter 21 Mediator pattern

414

 // 3 persons-Amit, Sohel, Joseph

 // Amit and Sohel from Friend class

 Friend friend1 = new Friend(mediator);

 friend1.Name = "Amit";

 friend1.Status = "On";

 Friend friend2 = new Friend(mediator);

 friend2.Name = "Sohel";

 friend2.Status = "On";

 // Joseph is from Stranger class

 Stranger stranger1 = new Stranger(mediator);

 stranger1.Name = "Joseph";

 stranger1.Status = "On";

 // Registering the participants

 mediator.Register(friend1);

 mediator.Register(friend2);

 mediator.Register(stranger1);

 // Displaying the participant's list

 mediator.DisplayDetails();

 Console.WriteLine("Communication starts among

participants...");

 friend1.SendMessage(friend2, "Hi Sohel,can we discuss the

mediator pattern?");

 friend2.SendMessage(friend1, "Hi Amit,Yup, we can discuss

now.");

 stranger1.SendMessage(friend1, " How are you?");

 // Another friend who does not register to the mediator

 Friend friend4 = new Friend(mediator);

 friend4.Name = "Todd";

 // This message cannot reach Joseph, because Todd

 // is not the registered user.

 friend4.SendMessage(stranger1, "Hello Joseph...");

Chapter 21 Mediator pattern

415

 // This message will NOT reach Todd because he

 // is not a registered user.

 friend1.SendMessage(friend4, "Hello Todd...");

 // An outsider tries to participate

 Stranger stranger2 = new Stranger(mediator);

 stranger2.Name = "Jack";

 //mediator.Register(stranger1);

 // This message cannot reach Joseph, because Jack

 // is not the registered user.

 stranger2.SendMessage(stranger1, "Hello friend...");

 Console.WriteLine("Sohel is going to offline now.");

 friend2.Status = "Off";

 /*

 Since Sohel is offline, he will NOT receive

 this message.

 */

 friend1.SendMessage(friend2, "Hi Sohel, I have a gift for

you.");

 Console.WriteLine("Sohel is online again.");

 friend2.Status = "On";

 stranger1.SendMessage(friend2, "Hi Sohel, Amit was looking for

you.");

 // Wait for user

 Console.Read();

 }

 }

}

 Output
Here’s the modified output.

Mediator Pattern Modified Demonstration.

Chapter 21 Mediator pattern

416

Current list of registered participants is as follows:

Amit

Sohel

Joseph

Communication starts among participants...

[Amit] posts: Hi Sohel,can we discuss the mediator pattern?Last message

posted 15-05-2020 11:30:50

Sohel has received a message from Amit saying: Hi Sohel,can we discuss the

mediator pattern?

[Sohel] posts: Hi Amit,Yup, we can discuss now.Last message posted

15-05- 2020 11:30:51

Amit has received a message from Sohel saying: Hi Amit,Yup, we can

discuss now.

[Joseph] posts: How are you?Last message posted 15-05-2020 11:30:52

Amit has received a message from Joseph saying: How are you?

An outsider named Todd of [MediatorPatternModifiedDemo.Friend] is trying to

send a message to Joseph.

Amit,at this moment, you cannot send message to Todd because he is either

not a registered user or he is currently offline.

An outsider named Jack of [MediatorPatternModifiedDemo.Stranger] is trying

to send a message to Joseph.

Sohel is going to offline now.

Amit,at this moment, you cannot send message to Sohel because he is either

not a registered user or he is currently offline.

Sohel is online again.

[Joseph] posts: Hi Sohel, Amit was looking for you.Last message posted 15-

05- 2020 11:30:53

Sohel has received a message from Joseph saying: Hi Sohel, Amit was looking

for you.

Chapter 21 Mediator pattern

417

Note Some of the lines from the previous output are bold to demonstrate the
impact of the modified program (demonstration 2).

Now you can see that a participant can send messages to another participant

if and only if he is online. The mediator takes care of sending the messages to the

correct destination, and before it sends a message, it ensures that both participants are

registered users.

21.2 What are the advantages of using the Mediator pattern?
The following are some of the advantages.

• You can reduce the complexity of objects communicating in a system.

• The pattern promotes loose coupling. So, objects can be reused.

• The pattern reduces the number of subclasses in the system.

• You replace a many-to-many relationship with a one-to-many

relationship, so the code is much easier to read and understand. And

as an obvious effect of this, maintenance becomes easier.

• You can provide a centralized control with this pattern.

• In short, it is always a good aim to remove tight coupling from your

code, and the Mediator pattern scores high in that context.

21.3 What are the disadvantages of using the Mediator pattern?
The following points address the challenges.

• In some cases, implementing the proper encapsulation becomes

tricky, and the mediator object’s architecture becomes complex.

• Sometimes maintaining a complex mediator becomes a big concern.

21.4 If you need to add a new rule or logic, you can directly add it to the mediator.
Is this correct?

Yes.

Chapter 21 Mediator pattern

418

21.5 I’m finding some similarities between the Facade pattern and the Mediator
pattern. Is this correct?

Yes. In his book Design Pattern for Dummies (For Dummies, 2006), Steve Holzner

mentions the similarity by describing the Mediator pattern as a multiplexed Facade

pattern. In the Mediator pattern, instead of working with an interface of a single object,

you are making a multiplexed interface among multiple objects to do smooth transitions.

21.6 In this pattern, you are reducing the number of interconnections among
various objects. What are the key benefits you have achieved because of this
reduction?

More interconnections among objects can create a monolithic system that becomes

difficult to change (because the behaviors are distributed among many objects). As a

side effect, you may need to create many subclasses to bring those changes into the

system.

21.7 In both implementations, you are using Thread.Sleep(1000). What is the
reason for this?

You can ignore that. I used this to mimic a real-life scenario. I assume that

participants are posting the messages after reading them properly, and this activity takes

a minimum of 1 second.

Chapter 21 Mediator pattern

419
© Vaskaran Sarcar 2020
V. Sarcar, Design Patterns in C#, https://doi.org/10.1007/978-1-4842-6062-3_22

CHAPTER 22

Chain of Responsibility
Pattern
This chapter covers the Chain of Responsibility pattern.

 GoF Definition
Avoid coupling the sender of a request to its receiver by giving more than one object a

chance to handle the request. Chain the receiving objects and pass the request along the

chain until an object handles it.

 Concept
In this pattern, you form a chain of objects in which you pass the responsibility of a task

from one object to another until an object accepts the responsibility of completing the

task. Each object in the chain can handle a particular kind of request. If an object cannot

handle the request fully, it passes the request to the next object in the chain. This process

may continue until the end of the chain. This kind of request-handling mechanism gives

you the flexibility to add a new processing object (handler) in the chain. Figure 22-1

shows such a chain with N number of handlers.

https://doi.org/10.1007/978-1-4842-6062-3_22#DOI

420

 Real-World Example
Most software organizations have some customer care representatives who take

feedback from customers and forward any issues to the appropriate departments in

the organization. However, the departments do not fix the issue simultaneously. The

department that seems responsible looks at the issue first, and if those employees

believe that the issue should be forwarded to another department, they forward it.

You may see a similar scenario when a patient visits a hospital. Doctors from one

department can refer the patient to a different department (for further diagnosis) if they

think it’s needed.

You can consider a mobile company organization too. For example, in India, the

Vodafone mobile company runs a customer care department. If you have a complaint,

you first raise the issue to the customer care department. If they fail to solve your

problem, you can escalate it to a nodal officer. If you are not satisfied with the solution

given by the nodal officer, you can further escalate the issue to an appellate officer.

 Computer-World Example
Consider a software application (e.g., a printer) that can send emails and faxes. As a

result, any customer can report either fax issues or email issues, so you need to have

two different types of error handlers: EmailErrorHandler and FaxErrorHandler.You

can safely assume that EmailErrorHandler handles email errors only, and it is not

responsible for fax errors. In the same manner, FaxErrorHandler handles fax errors and

does not care about email errors.

Figure 22-1. Chain of Responsibility pattern

Chapter 22 Chain of responsibility pattern

421

You can form a chain like this: whenever your application finds an error, it just raises

a ticket and forwards the error with the hope that one of those handlers will handle it.

Let’s assume that the request first comes to FaxErrorhandler. If this handler agrees that

it is a fax issue, it handles it; otherwise, it forwards the issue to EmailErrorHandler.

Note that here the chain is ending with EmailErrorHandler. But if you need to

handle another type of issue, such as an authentication issue, because of security

vulnerabilities, you can make an AuthenticationErrorHandler and put it after

EmailErrorHandler. Now, if an EmailErrorHandler also cannot fix the issue completely,

it forwards the issue to AuthenticationErrorHandler, and the chain ends there.

POINTS TO REMEMBER

this is just an example; you are free to place these handlers in any order that you like. the

bottom line is that the processing chain may end in either of these two scenarios:

• a handler can process the request completely.

• you have reached the end of the chain.

You see a similar mechanism when you are implementing an exception handling

mechanism with multiple catch blocks in your C# application. If an exception occurs in a

try block, the first catch block tries to handle it. If it cannot handle that type of exception,

the next catch block tries to handle it, and the same mechanism is followed until the

exception is handled properly by some handlers (catch blocks). If the last catch block in

your application is also unable to handle it, the exception is thrown outside of this chain.

 Implementation
Let’s assume that in the following example, you write the program for the computer

world example I’ve just discussed. In this example, I assume that we need to process

different kinds of messages that may come from either email or fax. Customers can also

tag either a normal priority or a high priority to these messages. So, at the beginning of

the program, you see the following segments of code.

/// <summary>

/// Message priorities

/// </summary>

Chapter 22 Chain of responsibility pattern

422

public enum MessagePriority

{

 Normal,

 High

}

/// <summary>

/// Message class

/// </summary>

public class Message

{

 public string Text { get; set; }

 public MessagePriority Priority;

 public Message(string msg, MessagePriority priority)

 {

 this.Text = msg;

 this.Priority = priority;

 }

}

I chose an abstract Receiver class this time because I wanted to share some

common functionality across its derived classes.

POINTS TO NOTE

alternatively, you can choose an interface and use the concept of default interface methods,

which are supported in C# 8. since the legacy versions do not support this, i chose the

abstract class for this example.

The Receiver class looks like the following.

abstract class Receiver

{

 protected Receiver nextReceiver;

 //To set the next handler in the chain. public void

NextReceiver(Receiver nextReceiver)

Chapter 22 Chain of responsibility pattern

423

 {

 this.nextReceiver = nextReceiver;

 }

 public abstract void HandleMessage(Message message);

}

The FaxErrorHandler and EmailErrorHandler classes inherit from Receiver, and

they act as the concrete handlers in this program. To demonstrate a very simple use case,

I could use the following code segment in FaxErrorHandler.

if (message.Text.Contains("fax"))

{

 Console.WriteLine($"FaxErrorHandler processed { message.Priority }

priority issue: { message.Text }");

}

else if (nextReceiver != null)

{

 nextReceiver.HandleMessage(message);

}

POINTS TO REMEMBER

in the previous code segment, you can see that if a message contains the word fax, then the

faxerrorhandler handles it; otherwise, it passes the issue to the next handler. similarly, in the

upcoming example, if a message contains the word email, then emailerrorhandler handles the

message and so forth. so, you may question what happens if both email and fax are included

in a message? i took care of this in the upcoming example, but for simplicity, you can ignore

the case using this segment of code. in a real-world problem, one error can cause another

error; so when an error occurs in the fax code base, the same error can propagate to the

email code base (if they share a common code base). a common fix can solve both issues. in

the upcoming example, i show you when you should pass the issue and how to pass the issue

to the next handler. so, at first, you may ignore the individual pillar complexities.

in actuality, an organization may prefer to implement an ai-based mechanism to analyze

an issue first, and then based on the symptoms, they can forward the issue to a particular

department, but at the core, you may see this pattern.

Chapter 22 Chain of responsibility pattern

424

To demonstrate a situation in which a message contains both the word email and the

word fax, I used a relatively complex structure for FaxErrorHandler, which is as follows

(the associated comments can be your guide).

class FaxErrorHandler : Receiver

{

 bool messagePassedToNextHandler = false;

 public override void HandleMessage(Message message)

 {

 // Start processing if the error message contains "fax"

 if (message.Text.Contains("fax"))

 {

 Console.WriteLine("FaxErrorHandler processed {0} priority

issue: {1}", message.Priority, message.Text);

 /*

 Do not leave now, if the error message contains 'email' too.

 */

 if (nextReceiver != null && message.Text.Contains("email"))

 {

 Console.WriteLine("I've fixed fax side defect.Now email

team needs to work on top of this fix.");

 nextReceiver.HandleMessage(message);

 // We'll not pass the message repeatedly to next

handler

 messagePassedToNextHandler = true;

 }

 }

 if (nextReceiver != null && messagePassedToNextHandler != true)

 {

 nextReceiver.HandleMessage(message);

 }

 }

}

The EmailErrorHandler is similar to this. Now if you have a message that contains

both email and fax, like "Neither the fax nor email is working," this relatively

Chapter 22 Chain of responsibility pattern

425

complex structure can help you to get the following output, where you can see that both

teams worked on the defect:

FaxErrorHandler processed High priority issue: Neither fax nor email are

working.

I've fixed fax side defect. Now email team needs to work on top of this fix.

EmailErrorHandler processed High priority issue: Neither fax nor email are

working.

Email side defect is fixed. Now fax team needs to cross verify this fix.

At the end of my chain, there is an UnknownErrorHandler that states that the issue is

neither from Email nor from Fax; so you need to consult the expert developers to tackle

the issue.

class UnknownErrorHandler : Receiver

 {

 public override void HandleMessage(Message message)

 {

 if (!(message.Text.Contains("fax")|| message.Text.

Contains("email")))

 {

 Console.WriteLine("Unknown error occurs.Consult experts

immediately.");

 }

 else if (nextReceiver != null)

 {

 nextReceiver.HandleMessage(message);

 }

 }

}

Lastly, the forming of the error handler objects is quite easy and straightforward

which are as follows.

// Different handlers

Receiver emailHandler = new EmailErrorHandler();

Receiver faxHandler = new FaxErrorHandler();

Receiver unknownHandler = new UnknownErrorHandler();

Chapter 22 Chain of responsibility pattern

426

From the following code segment, you can easily understand how to form a chain of

handlers.

/*

Making the chain :

FaxErrorhandler->EmailErrorHandler->UnknownErrorHandler.

*/

faxHandler.NextReceiver(emailHandler);

emailHandler.NextReceiver(unknownHandler);

 Class Diagram
Figure 22-2 shows the class diagram.

Figure 22-2. Class diagram

Chapter 22 Chain of responsibility pattern

427

 Solution Explorer View
Figure 22-3 shows the high-level structure of the program.

Figure 22-3. Solution Explorer View

Chapter 22 Chain of responsibility pattern

428

 Demonstration
Here’s the complete program.

using System;

namespace ChainOfResponsibilityPattern

{

 /// <summary>

 /// Message priorities

 /// </summary>

 public enum MessagePriority

 {

 Normal,

 High

 }

 /// <summary>

 /// Message class

 /// </summary>

 public class Message

 {

 public string Text { get; set; }

 public MessagePriority Priority;

 public Message(string msg, MessagePriority priority)

 {

 this.Text = msg;

 this.Priority = priority;

 }

 }

 /// <summary>

 /// Abstract class -Receiver

 /// The abstract class is chosen to share

 /// the common codes across derived classes.

 /// </summary>

Chapter 22 Chain of responsibility pattern

429

 abstract class Receiver

 {

 protected Receiver nextReceiver;

 //To set the next handler in the chain.

 public void NextReceiver(Receiver nextReceiver)

 {

 this.nextReceiver = nextReceiver;

 }

 public abstract void HandleMessage(Message message);

 }

 /// <summary>

 /// FaxErrorHandler class

 /// </summary>

 class FaxErrorHandler : Receiver

 {

 bool messagePassedToNextHandler = false;

 public override void HandleMessage(Message message)

 {

 //Start processing if the error message contains "fax"

 if (message.Text.Contains("fax"))

 {

 Console.WriteLine($"FaxErrorHandler processed {message.

Priority} priority issue: {message.Text}");

 //Do not leave now, if the error message contains email too.

 if (nextReceiver != null && message.Text.Contains("email"))

 {

 Console.WriteLine("I've fixed fax side defect.Now email

team needs to work on top of this fix.");

 nextReceiver.HandleMessage(message);

 //We'll not pass the message repeatedly to next handler.

 messagePassedToNextHandler = true;

 }

 }

Chapter 22 Chain of responsibility pattern

430

 if (nextReceiver != null && messagePassedToNextHandler != true)

 {

 nextReceiver.HandleMessage(message);

 }

 }

 }

 /// <summary>

 /// EmailErrorHandler class

 /// </summary>

 class EmailErrorHandler : Receiver

 {

 bool messagePassedToNextHandler = false;

 public override void HandleMessage(Message message)

 {

 //Start processing if the error message contains "email"

 if (message.Text.Contains("email"))

 {

 Console.WriteLine($"EmailErrorHandler processed {message.

Priority} priority issue: {message.Text}");

 //Do not leave now, if the error message contains "fax" too.

 if (nextReceiver != null && message.Text.Contains("fax"))

 {

 Console.WriteLine("Email side defect is fixed.Now fax

team needs to cross verify this fix.");

 //Keeping the following code here.

 //It can be useful if you place this handler before fax

//error handler

 nextReceiver.HandleMessage(message);

 //We'll not pass the message repeatedly to the next

//handler.

 messagePassedToNextHandler = true;

 }

 }

Chapter 22 Chain of responsibility pattern

431

 if (nextReceiver != null && messagePassedToNextHandler != true)

 {

 nextReceiver.HandleMessage(message);

 }

 }

 }

 /// <summary>

 /// UnknownErrorHandler class

 /// </summary>

 class UnknownErrorHandler : Receiver

 {

 public override void HandleMessage(Message message)

 {

 if (!(message.Text.Contains("fax") || message.Text.

Contains("email")))

 {

 Console.WriteLine("Unknown error occurs.Consult experts

immediately.");

 }

 else if (nextReceiver != null)

 {

 nextReceiver.HandleMessage(message);

 }

 }

 }

 /// <summary>

 /// Client code

 /// </summary>

 class Client

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Chain of Responsibility Pattern

Demo***\n");

Chapter 22 Chain of responsibility pattern

432

 //Different handlers

 Receiver emailHandler = new EmailErrorHandler();

 Receiver faxHandler = new FaxErrorHandler();

 Receiver unknownHandler = new UnknownErrorHandler();

 /*

 Making the chain :

 FaxErrorhandler->EmailErrorHandler->UnknownErrorHandler.

 */

 faxHandler.NextReceiver(emailHandler);

 emailHandler.NextReceiver(unknownHandler);

 Message msg = new Message("The fax is reaching late to the

destination.", MessagePriority.Normal);

 faxHandler.HandleMessage(msg);

 msg = new Message("The emails are not reaching to the

destinations.", MessagePriority.High);

 faxHandler.HandleMessage(msg);

 msg = new Message("In email, CC field is disabled always.",

MessagePriority.Normal);

 faxHandler.HandleMessage(msg);

 msg = new Message("The fax is not reaching to the

destination.", MessagePriority.High);

 faxHandler.HandleMessage(msg);

 msg = new Message("Cannot login into the system.",

MessagePriority.High);

 faxHandler.HandleMessage(msg);

 msg = new Message("Neither fax nor email are working.",

MessagePriority.High);

 faxHandler.HandleMessage(msg);

 Console.ReadKey();

 }

 }

}

Chapter 22 Chain of responsibility pattern

433

 Output
Here’s the output.

Chain of Responsibility Pattern Demo

FaxErrorHandler processed Normal priority issue: The fax is reaching late

to the destination.

EmailErrorHandler processed High priority issue: The emails are not

reaching to the destinations.

EmailErrorHandler processed Normal priority issue: In email, CC field is

disabled always.

FaxErrorHandler processed High priority issue: The fax is not reaching to

the destination.

Unknown error occurs.Consult experts immediately.

FaxErrorHandler processed High priority issue: Neither fax nor email are

working.

I've fixed fax side defect.Now email team needs to work on top of this fix.

EmailErrorHandler processed High priority issue: Neither fax nor email are

working.

Email side defect is fixed.Now fax team needs to cross verify this fix.

 Q&A Session
22.1 In the previous example, why do you need the message priorities?
Good catch. Actually, you can ignore the message priorities because, for simplicity,

you are just searching for the text Email or Fax in the handlers. I added these priorities

to beautify the code. Instead of using separate handlers for Email and Fax, you could

make a different kind of chain that can handle the messages based on the priorities. But

I did not form the priority-based chain in our demonstration because I assume that the

developers who are working in the Fax pillar do not know much about the Email pillar

and vice versa.

Chapter 22 Chain of responsibility pattern

434

22.2 What are the advantages of using the Chain of Responsibility design pattern?
Some notable advantages are as follows.

• You have more than one object to handle a request. (If a handler

cannot handle the whole request, it can forward the responsibility to

the next handler in the chain.)

• The nodes of the chain can be added or removed dynamically.

Also, you can shuffle their order. For example, in the previous

application, if you see that most defects come from email, then you

may place EmailErrorHandler as the first handler to save the average

processing time of the application.

• A handler does not need to know how the next handler in the chain

handles the request. It can focus on its handling mechanism.

• In this pattern, you are decoupling the senders (of requests) from the

receivers.

22.3 What are the challenges associated with using the Chain of Responsibility
design pattern?

The following points describe some of the challenges.

• There is no guarantee that the request is handled because you may

reach the end of the chain but have not found any explicit receiver to

handle the request.

• Debugging becomes tricky with this kind of design.

22.4 How do you handle the scenario where you have reached the end of the
chain, but no handler handled the request?

One simple solution is through try/catch (or try/finally or try/catch/finally) blocks.

You can put all the handlers in the try block, and if none handles the request, you can

raise an exception with the appropriate messages and catch the exception in the catch

block to draw your attention to it (or handle it in some different way).

Chapter 22 Chain of responsibility pattern

435

The GoF talked about Smalltalk’s automatic forwarding mechanism

(doesNotUnderstand) in a similar context. If a message cannot find a proper handler, it

is caught in doesNotUnderstand implementations, which can be overridden to forward

the message in the object’s successor, log it in a file, and store it in a queue for later

processing, or you can simply perform any other operations. But you must make a note

that by default, this method raises an exception that needs to be handled properly.

22.5 I can say that a handler either handles the request fully or passes it to the
next handler. Is this correct?

Yes.

22.6 It appears to me that there are similarities between the Observer pattern

and the Chain of Responsibility pattern. Is this correct?
In an Observer pattern, all registered users get notifications in parallel, but in the

Chain of Responsibility pattern, objects in the chain are sequentially notified one by one,

and this process continues until an object handles the notification fully (or you reach at

the end of the chain). The comparisons are shown with diagrams in the “Q&A Session”

section of the Observer pattern (see Q&A 14.4 in Chapter 14).

Chapter 22 Chain of responsibility pattern

437
© Vaskaran Sarcar 2020
V. Sarcar, Design Patterns in C#, https://doi.org/10.1007/978-1-4842-6062-3_23

CHAPTER 23

Interpreter Pattern
This chapter covers the Interpreter pattern.

 GoF Definition
Given a language, define a representation for its grammar along with an interpreter that

uses the representation to interpret sentences in the language.

 Concept
This pattern plays the role of a translator, and it is often used to evaluate sentences in a

language. So, you first need to define a grammar to represent the language. Then the

interpreter deals with that grammar. This pattern is best when the grammar is simple.

POINTS TO NOTE

To better understand this pattern, it is helpful to be familiar with words (or sentences),

grammar, languages, and so forth in Automata, which is a big topic. The detailed discussion

of it is beyond the scope of the book. For now, you know that in a formal language, the

alphabet may contain an infinite number of elements, a word can be a finite sequence of

letters (simply strings), and a set of all strings generated by grammar is called the language

generated the grammar (G). Normally, grammar is represented by a tuple (V,T,S,P) where V is a

set of nonterminal symbols, T is a set of terminal symbols (S) is the start symbol, and P is the

production rules. For example, if you have a grammar G = (V,T,S,P) where

V={S},

T={a,b},

P={S->aSbS,S->bSaS,S->ε },
S={S};

https://doi.org/10.1007/978-1-4842-6062-3_23#DOI

438

The ε denotes an empty string. The grammar can generate an equal number of a’s and b’s,

like ab, ba, abab, baab, and so forth. For example, the following steps show a derivation

process of getting abba.

S

aSbS [since S->aSbS]

abS [since S->ε]
abbSaS [since S->bSaS]

abbaS [since S->ε]
abba [sinceS->ε]

In the same way, you can generate baab. Here are the derivation steps as a quick reference.

S

bSaS [since S->bSaS]

baS [sinceS->ε]
baaSbS [since S->aSbS]

baabS [sinceS->ε]
baab [sinceS->ε]

Each class in this pattern may represent a rule in the language, and it should have a

method to interpret an expression. So, to handle a greater number of rules, you need to

create a greater number of classes, and this is why an Interpreter pattern is seldom used

to handle very complex grammar.

Let’s consider different arithmetic expressions in a calculator program. Though these

expressions are different, they all constructed using some basic rules, and these rules

are defined in the grammar of the language (of these arithmetic expressions). So, it is a

better idea if you can interpret a generic combination of these rules rather than treating

each different combination of rules as separate cases. An Interpreter pattern can be used

in such a scenario, which will be clear to you when you see demonstration 2 in detail.

But before that, let’s look at a relatively simple example in demonstration 1.

A typical structure of this pattern is often described with a diagram similar to

Figure 23-1.

CHAPTer 23 INTerPreTer PATTerN

439

The terms are described as follows.

• AbstractExpression is typically an interface with an interpret

method. You need to pass a context object to this method.

• TerminalExpression is used for terminal expressions. A terminal

expression is the one that does not need other expressions to

interpret. They are leaf nodes (i.e., they do not have child nodes) in

the data structure.

• NonterminalExpression is used for nonterminal expressions. It is

also known as AlternationExpression, RepetitionExpression, and

SequenceExpression. These are like composites that can contain

both the terminal and nonterminal expressions. When you call

the Interpret() method on this, you call Interpret() on all of its

children. In demonstration 2, you see them in action.

• Context holds the global information that the interpreter needs.

• Client calls the Interpret() method. Optionally, it can build the

syntax tree based on the rules of the language.

Figure 23-1. Structure of a typical Interpreter pattern

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

CHAPTer 23 INTerPreTer PATTerN

440

POINTS TO REMEMBER

• An interpreter processes a language with simple grammar rules. Ideally,

developers do not want to create their own languages, which is why they

seldom use this pattern.

• There are two demonstrations in this chapter, which are not related to one

another. The first is relatively simple, but the second is complex and involves

more code.

• In the first demonstration, you transform a three-digit number into its equivalent

word form. This program is fine-tuned from the previous edition of this book.

• The second program uses the Interpreter pattern as a rule validator and

explains the details. My book Java Design Patterns (Apress, 2018) discusses

the same concept with multiple examples.

 Real-World Example
Real-world examples include a translator who translates a foreign language. Musicians

play the role of interpreters of music notes, which is the “grammar.”

 Computer-World Example
The Java compiler interprets the Java source code into bytecode that a Java virtual

machine understands. In C#, the source code is converted to MSIL intermediate code,

which is interpreted by the Common Language Runtime (CLR). Upon execution, this

MSIL is converted to native code (binary executable code) by the Just-In-Time (JIT)

compiler.

CHAPTer 23 INTerPreTer PATTerN

441

 Implementation
In general, you represent each of these grammar rules with a class. Let’s define a simple

rule, as shown here.

E ::= E1 E2 E3

E1: = Zero Hundred(s) | One Hundred(s) | Two Hundred(s) |…|
Nine Hundred(s)

E2: = Zero Ten(s) | One Ten(s) | “TwoTen(s) | …| Ninety

E3: = and Zero | and One |and Two |and Three |…| and Nine

For simplicity and better readability, I am representing this grammar with

four classes: InputExpression for E (an abstract class), HundredExpression for E1,

TensExpression for E2, and UnitExpression for E3. So, in the upcoming program

(demonstration 1), 789 is interpreted as Seven hundred(s) Eight ten(s) and Nine.

In demonstration 1, the Context class is very easy to understand. It has a public

constructor that accepts a string parameter called input, which is later interpreted

in word forms. The class also contains a read-only property Input and a read-write

property called Output, and it is defined as follows.

 public class Context

 {

 private string input;

 public string Input {

 get

 {

 return input;

 }

 }

 public string Output { get; set; }

 // The constructor

 public Context(string input)

 {

 this.input = input;

 }

 }

CHAPTer 23 INTerPreTer PATTerN

442

The abstract class InputExpression holds the abstract method Interpret(...),

which is overridden by its concrete subclasses called HundredExpression,

TensExpression, and UnitExpression. This class also contains a concrete method

GetWord(string str), which is used in all the concrete subclasses. I placed this method

in this abstract class so that I can simply avoid repeating this code in concrete subclasses.

This class is as follows.

 // The abstract class-will hold the common code.

 abstract class InputExpression

 {

 public abstract void Interpret(Context context);

 public string GetWord(string str)

 {

 switch (str)

 {

 case "1":

 return "One";

 case "2":

 return "Two";

 case "3":

 return "Three";

 case "4":

 return "Four";

 case "5":

 return "Five";

 case "6":

 return "Six";

 case "7":

 return "Seven";

 case "8":

 return "Eight";

 case "9":

 return "Nine";

 case "0":

 return "Zero";

CHAPTer 23 INTerPreTer PATTerN

443

 default:

 return "*";

 }

 }

 }

Inside the concrete subclass, you see the built-in Substring method to pick the

intended digit from the input. The following line shows this.

string hundreds = context.Input.Substring(0, 1);

Finally, in the client code, I used a separate method called

EvaluateInputWithContext to build the parse tree before I interpret the input in the

given context. So, you see the following lines.

// Building the parse tree

List<InputExpression> expTree = new List<InputExpression>();

expTree.Add(new HundredExpression());

expTree.Add(new TensExpression());

expTree.Add(new UnitExpression());

// Interpret the input

foreach (InputExpression inputExp in expTree)

{

 inputExp.Interpret(context);

}

// some other code..

The remaining code is easy to understand, so let’s move ahead.

 Class Diagram
Figure 23-2 shows the class diagram.

CHAPTer 23 INTerPreTer PATTerN

444

 Solution Explorer View
Figure 23-3 shows the high-level structure of the parts of the program.

Figure 23-2. Class diagram

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

CHAPTer 23 INTerPreTer PATTerN

445

 Demonstration 1
Here’s the complete demonstration.

using System;

using System.Collections.Generic;

namespace InterpreterPattern

{

 public class Context

 {

 private string input;

Figure 23-3. Solution Explorer view

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

CHAPTer 23 INTerPreTer PATTerN

446

 public string Input {

 get

 {

 return input;

 }

 }

 public string Output { get; set; }

 // The constructor

 public Context(string input)

 {

 this.input = input;

 }

 }

 // The abstract class. It will hold the common code

 abstract class InputExpression

 {

 public abstract void Interpret(Context context);

 public string GetWord(string str)

 {

 switch (str)

 {

 case "1":

 return "One";

 case "2":

 return "Two";

 case "3":

 return "Three";

 case "4":

 return "Four";

 case "5":

 return "Five";

 case "6":

 return "Six";

CHAPTer 23 INTerPreTer PATTerN

447

 case "7":

 return "Seven";

 case "8":

 return "Eight";

 case "9":

 return "Nine";

 case "0":

 return "Zero";

 default:

 return "*";

 }

 }

 }

 class HundredExpression : InputExpression

 {

 public override void Interpret(Context context)

 {

 string hundreds = context.Input.Substring(0,1);

 context.Output += GetWord(hundreds) + " hundred(s) ";

 }

 }

 class TensExpression : InputExpression

 {

 public override void Interpret(Context context)

 {

 string tens = context.Input.Substring(1,1);

 context.Output += GetWord(tens) + " ten(s) ";

 }

 }

 class UnitExpression : InputExpression

 {

 public override void Interpret(Context context)

 {

 string units = context.Input.Substring(2, 1);

CHAPTer 23 INTerPreTer PATTerN

448

 context.Output += "and "+GetWord(units);

 }

 }

 // Client Class

 class Client

 {

 public static void Main(String[] args)

 {

 Console.WriteLine("***Interpreter Pattern Demonstation-

1.***\n");

 Console.WriteLine(" It will validate first three digit of a

valid number.");

 string inputString="789";

 EvaluateInputWithContext(inputString);

 inputString = "456";

 EvaluateInputWithContext(inputString);

 inputString = "123";

 EvaluateInputWithContext(inputString);

 inputString = "075";

 EvaluateInputWithContext(inputString);

 inputString = "Ku79";//invalid input

 EvaluateInputWithContext(inputString);

 Console.ReadLine();

 }

 public static void EvaluateInputWithContext(string inputString)

 {

 Context context = new Context(inputString);

 //Building the parse tree

 List<InputExpression> expTree = new List<InputExpression>();

 expTree.Add(new HundredExpression());

 expTree.Add(new TensExpression());

 expTree.Add(new UnitExpression());

 // Interpret the input

CHAPTer 23 INTerPreTer PATTerN

449

 foreach (InputExpression inputExp in expTree)

 {

 inputExp.Interpret(context);

 }

 if (!context.Output.Contains("*"))

 Console.WriteLine($" {context.Input} is interpreted as

{context.Output}");

 else

 {

 Console.WriteLine($" {context.Input} is not a valid

input.");

 }

 }

 }

}

 Output
Here’s the output.

Interpreter Pattern Demonstation-1.

It will validate first three digit of a valid number.

789 is interpreted as Seven hundred(s) Eight ten(s) and Nine

456 is interpreted as Four hundred(s) Five ten(s) and Six

123 is interpreted as One hundred(s) Two ten(s) and Three

075 is interpreted as Zero hundred(s) Seven ten(s) and Five

Ku79 is not a valid input.

 Another Implementation
Let’s look at another usage of this pattern. There are some important steps (which are

followed in this example) when you consider implementing the pattern. These are as

follows.

• Step 1 Define the rules of the language for which you want to build

an interpreter.

CHAPTer 23 INTerPreTer PATTerN

450

• Step 2 Define an abstract class or an interface to represent an

expression. It should contain a method to interpret an expression.

• Step 2A Identify terminal and nonterminal expressions. For

example, in the upcoming example, the IndividualEmployee

class is a terminal expression class.

• Step 2B Create nonterminal expression classes. Each of them

calls the Interpret method on their children. For example, in the

upcoming example, OrExpression and AndExpression classes

are non- terminal expression classes.

• Step 3 Build the abstract syntax tree using these classes. You can

do this inside the client code, or you can create a separate class to

accomplish the task.

• Step 4 A client now uses this tree to interpret a sentence.

• Step 5 Pass the context to the interpreter. It typically has sentences to

be interpreted. An interpreter can also perform some additional tasks

using this context.

POINTS TO NOTE

In the upcoming program, I use the Interpreter pattern as a rule validator.

Here I instantiate different employees with their “years of experience” and the

current grades. For simplicity, there are four employees in four different grades: G1, G2,

G3, and G4. So, you see the following lines.

 Employee emp1 = new IndividualEmployee(5, "G1");

 Employee emp2 = new IndividualEmployee(10, "G2");

 Employee emp3 = new IndividualEmployee(15, "G3");

 Employee emp4 = new IndividualEmployee(20, "G4");

CHAPTer 23 INTerPreTer PATTerN

451

I want to validate a rule against the context, which tells you that to be promoted,

an employee should have minimum 10 years of experience, and he should be from G2

grade or G3 grade. Once these expressions are interpreted, you see the output in terms of a

boolean value. You see the following lines of code inside the Main() method.

// Minimum Criteria for promoton is:

// The year of experience is minimum 10 yrs. and

// Employee grade should be either G2 or G3

List<string> allowedGrades = new List<string> { "G2", "G3" };

Context context = new Context(10, allowedGrades);

You can see that the allowed grades are stored in a list and passed to the Context

class constructor. So, the following segment of code in Context class can make sense

to you.

private int experienceReqdForPromotion;

private List<string> allowedGrades;

public Context(int experience, List<string> allowedGrades)

{

 this.experienceReqdForPromotion = experience;

 this.allowedGrades = new List<string>();

 foreach (string grade in allowedGrades)

 {

 this.allowedGrades.Add(grade);

 }

}

Employee is an interface with the Interpret(...) method as follows.

interface Employee

{

 bool Interpret(Context context);

}

CHAPTer 23 INTerPreTer PATTerN

452

As I told you before, the IndividualEmployee class acts as the leaf node in this

example. This class implements Employee interface method as follows.

public bool Interpret(Context context)

{

 if (this.yearOfExperience >= context.GetYearofExperience()

 && context.GetPermissibleGrades().Contains(this.currentGrade))

 {

 return true;

 }

 return false;

}

Now let’s handle some complex rules or expressions in this example. In the client

code, you see the first complex rule in the following forms.

Console.WriteLine("Is emp1 and any of emp2, emp3, emp4 is eligible for

promotion?" + builder.BuildTreeBasedOnRule1(emp1, emp2, emp3, emp4).

Interpret(context));

Console.WriteLine("Is emp2 and any of emp1, emp3, emp4 is eligible for

promotion?"+ builder.BuildTreeBasedOnRule1(emp2, emp1, emp3, emp4).

Interpret(context));

// and so on..

And the second complex rule is in the following form.

Console.WriteLine("Is emp1 or (emp2 but not emp3) is eligible for

promotion?"+ builder.BuildTreeBasedOnRule2(emp1, emp2, emp3).

Interpret(context));

Console.WriteLine("Is emp2 or (emp3 but not emp4) is eligible for

promotion?"+ builder.BuildTreeBasedOnRule2(emp2, emp3, emp4).

Interpret(context));

So, the question may come into your mind how these rules are working? Here is the

answer: another class, EmployeeBuilder, has methods to evaluate these rules. You’ll see

the detailed implementation shortly, but for now, let’s look at the step by step process to

form the first rule, which is as follows with supporting comments.

CHAPTer 23 INTerPreTer PATTerN

453

// Building the tree

//Complex Rule-1: emp1 and (emp2 or (emp3 or emp4))

public Employee BuildTreeBasedOnRule1(Employee emp1, Employee emp2,

Employee emp3, Employee emp4)

{

 // emp3 or emp4

 Employee firstPhase = new OrExpression(emp3, emp4);

 // emp2 or (emp3 or emp4)

 Employee secondPhase = new OrExpression(emp2, firstPhase);

 // emp1 and (emp2 or (emp3 or emp4))

 Employee finalPhase = new AndExpression(emp1, secondPhase);

 return finalPhase;

}

AndExpression, OrExpression, and NotExpression are three concrete classes

implementing the interface Employee, and hence each of them has its own

Interpret(...) method. For example, AndExpression implements Interpret(...)

method as follows.

public bool Interpret(Context context)

{

 return emp1.Interpret(context) && emp2.Interpret(context);

}

Similarly, OrExpression implements Interpret(...) method as follows.

public bool Interpret(Context context)

{

 return emp1.Interpret(context) || emp2.Interpret(context);

}

And NotExpression implements the same method as follows.

public bool Interpret(Context context)

{

 return !emp.Interpret(context);

}

CHAPTer 23 INTerPreTer PATTerN

454

You can see that each of the composite expressions is invoking the Interpret()

method on all its children. The remaining code is easy to understand, so let’s move on.

Note This design pattern does not instruct you on how to build a syntax tree or
how to parse sentences. It gives you freedom in how you want to proceed.

 Class Diagram
Figure 23-4 shows the class diagram.

 Solution Explorer View
Figure 23-5 shows the high-level structure of the parts of the program.

Figure 23-4. Class diagram

CHAPTer 23 INTerPreTer PATTerN

455

 Demonstration 2
Here’s the complete implementation.

using System;

using System.Collections.Generic;

Figure 23-5. Solution Explorer view

CHAPTer 23 INTerPreTer PATTerN

456

namespace InterpreterPatternDemo2

{

 interface Employee

 {

 bool Interpret(Context context);

 }

 /// <summary>

 /// IndividualEmployee class

 /// </summary>

 class IndividualEmployee : Employee

 {

 private int yearOfExperience;

 private string currentGrade;

 public IndividualEmployee(int experience, string grade)

 {

 this.yearOfExperience = experience;

 this.currentGrade = grade;

 }

 public bool Interpret(Context context)

 {

 if (this.yearOfExperience >= context.GetYearofExperience()

 && context.GetPermissibleGrades().Contains(this.

currentGrade))

 {

 return true;

 }

 return false;

 }

 }

 /// <summary>

 /// OrExpression class

 /// </summary>

 class OrExpression : Employee

 {

 private Employee emp1;

 private Employee emp2;

CHAPTer 23 INTerPreTer PATTerN

457

 public OrExpression(Employee emp1, Employee emp2)

 {

 this.emp1 = emp1;

 this.emp2 = emp2;

 }

 public bool Interpret(Context context)

 {

 return emp1.Interpret(context) || emp2.Interpret(context);

 }

 }

 /// <summary>

 /// AndExpression class

 /// </summary>

 class AndExpression : Employee

 {

 private Employee emp1;

 private Employee emp2;

 public AndExpression(Employee emp1, Employee emp2)

 {

 this.emp1 = emp1;

 this.emp2 = emp2;

 }

 public bool Interpret(Context context)

 {

 return emp1.Interpret(context) && emp2.Interpret(context);

 }

 }

 /// <summary>

 /// NotExpression class

 /// </summary>

 class NotExpression : Employee

 {

 private Employee emp;

CHAPTer 23 INTerPreTer PATTerN

458

 public NotExpression(Employee expr)

 {

 this.emp = expr;

 }

 public bool Interpret(Context context)

 {

 return !emp.Interpret(context);

 }

 }

 /// <summary>

 /// Context class

 /// </summary>

 class Context

 {

 private int experienceReqdForPromotion;

 private List<string> allowedGrades;

 public Context(int experience, List<string> allowedGrades)

 {

 this.experienceReqdForPromotion = experience;

 this.allowedGrades = new List<string>();

 foreach (string grade in allowedGrades)

 {

 this.allowedGrades.Add(grade);

 }

 }

 public int GetYearofExperience()

 {

 return experienceReqdForPromotion;

 }

 public List<string> GetPermissibleGrades()

 {

 return allowedGrades;

 }

 }

CHAPTer 23 INTerPreTer PATTerN

459

 /// <summary>

 /// EmployeeBuilder class

 /// </summary>

 class EmployeeBuilder

 {

 // Building the tree

 // Complex Rule-1: emp1 and (emp2 or (emp3 or emp4))

 public Employee BuildTreeBasedOnRule1(Employee emp1, Employee emp2,

Employee emp3, Employee emp4)

 {

 // emp3 or emp4

 Employee firstPhase = new OrExpression(emp3, emp4);

 // emp2 or (emp3 or emp4)

 Employee secondPhase = new OrExpression(emp2, firstPhase);

 // emp1 and (emp2 or (emp3 or emp4))

 Employee finalPhase = new AndExpression(emp1, secondPhase);

 return finalPhase;

 }

 // Complex Rule-2: emp1 or (emp2 and (not emp3))

 public Employee BuildTreeBasedOnRule2(Employee emp1, Employee emp2,

Employee emp3)

 {

 // Not emp3

 Employee firstPhase = new NotExpression(emp3);

 // emp2 or (not emp3)

 Employee secondPhase = new AndExpression(emp2, firstPhase);

 // emp1 and (emp2 or (not emp3))

 Employee finalPhase = new OrExpression(emp1, secondPhase);

 return finalPhase;

 }

 }

 public class Client

 {

CHAPTer 23 INTerPreTer PATTerN

460

 static void Main(string[] args)

 {

 Console.WriteLine("***Interpreter Pattern Demonstration-

2***\n");

 // Minimum Criteria for promoton is:

 // The year of experience is minimum 10 yrs. and

 // Employee grade should be either G2 or G3

 List<string> allowedGrades = new List<string> { "G2", "G3" };

 Context context = new Context(10, allowedGrades);

 Employee emp1 = new IndividualEmployee(5, "G1");

 Employee emp2 = new IndividualEmployee(10, "G2");

 Employee emp3 = new IndividualEmployee(15, "G3");

 Employee emp4 = new IndividualEmployee(20, "G4");

 EmployeeBuilder builder = new EmployeeBuilder();

 // Validating the 1st complex rule

 Console.WriteLine("----- Validating the first complex

rule.-----");

 Console.WriteLine("Is emp1 and any of emp2, emp3, emp4 is

eligible for promotion?"

 + builder.BuildTreeBasedOnRule1(emp1, emp2, emp3, emp4).

Interpret(context));

 Console.WriteLine("Is emp2 and any of emp1, emp3, emp4 is

eligible for promotion?"

 + builder.BuildTreeBasedOnRule1(emp2, emp1, emp3, emp4).

Interpret(context));

 Console.WriteLine("Is emp3 and any of emp1, emp2, emp3 is

eligible for promotion?"

 + builder.BuildTreeBasedOnRule1(emp3, emp1, emp2, emp4).

Interpret(context));

 Console.WriteLine("Is emp4 and any of emp1, emp2, emp3 is

eligible for promotion?"

 + builder.BuildTreeBasedOnRule1(emp4, emp1, emp2, emp3).

Interpret(context));

CHAPTer 23 INTerPreTer PATTerN

461

 Console.WriteLine("-----Validating the second complex rule

now.-----");

 //Validating the 2nd complex rule

 Console.WriteLine("Is emp1 or (emp2 but not emp3) is eligible

for promotion?"

 + builder.BuildTreeBasedOnRule2(emp1, emp2, emp3).

Interpret(context));

 Console.WriteLine("Is emp2 or (emp3 but not emp4) is eligible

for promotion?"

 + builder.BuildTreeBasedOnRule2(emp2, emp3, emp4).

Interpret(context));

 Console.ReadKey();

 }

 }

}

 Output
Here’s the output.

Interpreter Pattern Demonstration-2

----- Validating the first complex rule.-----

Is emp1 and any of emp2, emp3, emp4 is eligible for promotion?False

Is emp2 and any of emp1, emp3, emp4 is eligible for promotion?True

Is emp3 and any of emp1, emp2, emp3 is eligible for promotion?True

Is emp4 and any of emp1, emp2, emp3 is eligible for promotion?False

-----Validating the second complex rule now.-----

Is emp1 or (emp2 but not emp3) is eligible for promotion?False

Is emp2 or (emp3 but not emp4) is eligible for promotion?True

CHAPTer 23 INTerPreTer PATTerN

462

 Q&A Session
23.1 When should you use this pattern?
To be honest, it is not needed much in daily programming. However, in some rare

situations, you may need to work with your own programming language, where it could

come in handy. But before you proceed, you must ask yourself, what is the return on

investment (ROI)?

23.2 What are the advantages of using the Interpreter design pattern?
The following are some of the advantages.

• You are involved in the process of defining grammar for a language

and how to represent and interpret sentences. You can change and

extend the grammar also.

• You have full freedom over how to interpret these expressions.

23.3 What are the challenges associated with using the Interpreter design pattern?
I believe that the amount of work is the biggest concern. Also, maintaining a complex

grammar becomes tricky because you may need to create (and maintain) separate

classes to deal with different rules.

That’s the end of part 1 of the book. I hope you enjoyed all the detailed

implementations of all the GoF patterns. Now you can move to the next part of the book,

which covers some other interesting patterns.

CHAPTer 23 INTerPreTer PATTerN

PART II

Additional Design
Patterns

465
© Vaskaran Sarcar 2020
V. Sarcar, Design Patterns in C#, https://doi.org/10.1007/978-1-4842-6062-3_24

CHAPTER 24

Simple Factory Pattern
This chapter covers the Simple Factory pattern.

 Definition
The Simple Factory pattern creates an object without exposing the instantiation logic to

the client.

 Concept
In object-oriented programming (OOP), a factory is such an object that can create other

objects. A factory can be invoked in many ways, but most often, it uses a method that

can return objects with varying prototypes. Any subroutine that helps create these new

objects is considered a factory. Most importantly, it helps you abstract the process of

object creation from the consumers of the application.

 Real-World Example
In a South Indian restaurant, when you place an order for your favorite biryani dish,

the waiter may ask whether you like to have your Biryani with more spice or whether

it should be prepared with less spice. Based on your choice, the chef adds spices to the

core material and makes the appropriate dish for you.

https://doi.org/10.1007/978-1-4842-6062-3_24#DOI

466

 Computer-World Example
The Simple Factory pattern is common to software applications, but before proceeding,

note the following.

• The Simple Factory pattern is not treated as a standard design pattern

in the GoF’s famous book, but the approach is common to any

application you write where you want to separate the code that varies

a lot from the part of code that does not vary. It is assumed that you

follow this approach in all the applications you write.

• The Simple Factory pattern is considered the simplest form of the

Factory Method pattern (and Abstract Factory pattern). So, you can

assume that any application that follows either the Factory Method

pattern or the Abstract Factory pattern also follows the concept of the

Simple Factory pattern’s design goals.

In the following implementation, I discuss this pattern with a common use case.

Let’s go through the implementation.

 Implementation
These are the important characteristics of the following implementation.

• In this example, you are dealing with two different types of animals:

dogs and tigers. There are two concrete classes: Dog.cs and Tiger.

cs. Each class has a common parent, IAnimal.cs. You see the

following code:

// IAnimal.cs

namespace SimpleFactory

{

 public interface IAnimal

 {

 void AboutMe();

 }

}

Chapter 24 Simple FaCtory pattern

467

// Dog.cs

using System;

namespace SimpleFactory

{

 public class Dog : IAnimal

 {

 public void AboutMe()

 {

 Console.WriteLine("The dogs says: Bow-Wow.I prefer

barking.");

 }

 }

}

//Tiger.cs

using System;

namespace SimpleFactory

{

 public class Tiger : IAnimal

 {

 public void AboutMe()

 {

 Console.WriteLine("The tiger says: Halum.I prefer

hunting.");

 }

 }

}

• I put the code for creating objects in a different place (specifically, in

a factory class). Using this approach, when you create either a dog or

a tiger, you are not directly using the new operator in client code. So,

in the client code, you see the following line:

preferredType = simpleFactory.CreateAnimal();

Chapter 24 Simple FaCtory pattern

468

• In the upcoming example, the process of creating an object depends

on the user input. I separated the code that can vary from the code

that is least likely to vary. This mechanism can help you to remove

tight coupling in the system. So, inside Main(), you see the following

code with supportive comments:

IAnimal preferredType = null;

SimpleFactory simpleFactory = new SimpleFactory();

#region The code region that can vary based on users preference

/*

* Since this part may vary, we're moving the

* part to CreateAnimal() of SimpleFactory class.

*/

preferredType = simpleFactory.CreateAnimal();

#endregion

#region The codes that do not change frequently.

preferredType.AboutMe();

#endregion

Note in some places, you may see a variation of this pattern where
objects are created through a parameterized constructor such as
preferredType=simpleFactory.CreateAnimal("Tiger").

in the upcoming example, i select the animal based on users’ input, and a
parameterized constructor is not needed. in the earlier edition of this book, i used
two methods: Speak() and Action(). But to make this example short and
simple, i chose a single method called AboutMe(). i merged the previous two
methods into a single method.

 Class Diagram
Figure 24-1 shows the class diagram.

Chapter 24 Simple FaCtory pattern

469

 Solution Explorer View
Figure 24-2 shows the high-level structure of the program.

Figure 24-1. Class diagram

Figure 24-2. Solution Explorer view

Chapter 24 Simple FaCtory pattern

470

 Demonstration
Here’s the complete implementation. All parts of the program are separated and placed

in the namespace SimpleFactory. So, for the following code segments, you may see the

namespace declaration multiple times.

//IAnimal.cs

namespace SimpleFactory

{

 public interface IAnimal

 {

 void AboutMe();

 }

}

//Dog.cs

using System;

namespace SimpleFactory

{

 public class Dog : IAnimal

 {

 public void AboutMe()

 {

 Console.WriteLine("The dog says: Bow-Wow.I prefer barking.");

 }

 }

}

//Tiger.cs

using System;

namespace SimpleFactory

{

 public class Tiger : IAnimal

 {

 public void AboutMe()

 {

 Console.WriteLine("The tiger says: Halum.I prefer hunting.");

Chapter 24 Simple FaCtory pattern

471

 }

 }

}

//SimpleFactory.cs

using System;

namespace SimpleFactory

{

 public class SimpleFactory

 {

 public IAnimal CreateAnimal()

 {

 IAnimal intendedAnimal = null;

 Console.WriteLine("Enter your choice(0 for Dog, 1 for Tiger)");

 string b1 = Console.ReadLine();

 int input;

 if (int.TryParse(b1, out input))

 {

 Console.WriteLine("You have entered {0}", input);

 switch (input)

 {

 case 0:

 intendedAnimal = new Dog();

 break;

 case 1:

 intendedAnimal = new Tiger();

 break;

 default:

 Console.WriteLine("You must enter either 0 or 1");

 //We'll throw a runtime exception for any other

//choices.

 throw new ApplicationException(String.Format

 (" Unknown Animal cannot be instantiated."));

 }

 }

Chapter 24 Simple FaCtory pattern

472

 return intendedAnimal;

 }

 }

}

//Program.cs(Client)

 using System;

namespace SimpleFactory

{

 /*

 * A client is interested to get an animal

 * who can tell something about it.

 */

 class Client

 {

 static void Main(string[] args)

 {

 Console.WriteLine("*** Simple Factory Pattern Demo.***\n");

 IAnimal preferredType = null;

 SimpleFactory simpleFactory = new SimpleFactory();

 #region The code region that can vary based on users preference

 /*

 * Since this part may vary,we're moving the

 * part to CreateAnimal() in SimpleFactory class.

 */

 preferredType = simpleFactory.CreateAnimal();

 #endregion

 #region The codes that do not change frequently.

 preferredType.AboutMe();

 #endregion

 Console.ReadKey();

 }

 }

}

Chapter 24 Simple FaCtory pattern

473

 Output
The following is case 1, with user input 0.

*** Simple Factory Pattern Demo.***

Enter your choice(0 for Dog, 1 for Tiger)

0

You have entered 0

The dog says: Bow-Wow.I prefer barking.

The following is case 2, with user input 1.

*** Simple Factory Pattern Demo.***

Enter your choice(0 for Dog, 1 for Tiger)

1

You have entered 1

The tiger says: Halum.I prefer hunting.

The following is case 3, with user input 3.

*** Simple Factory Pattern Demo.***

Enter your choice(0 for Dog, 1 for Tiger)

3

You have entered 3

You must enter either 0 or 1

In this case, you get the following exception: “Unknown Animal cannot be

instantiated” (see Figure 24-3).

Chapter 24 Simple FaCtory pattern

474

 Q&A Session
24.1 In this example, I see that the clients are delegating the object’s creation

through the Simple Factory pattern. But instead of this, they could directly create
objects with the new operator. Is this correct?

No. These are the key reasons behind the previous design.

• One of the key object-oriented design principles is to separate the

parts of your code that are most likely to change from the rest.

• In this case, only the creation process for objects changes. You can

assume that there is code fragment to describe something about

an animal, and that part of the code does not need to vary inside

the client code. So, in the future, if there is any change required in

the creation process, you need to change only the CreateAnimal()

method of the SimpleFactory class. The client code is unaffected

because of those changes.

• You do not want to put lots of if-else blocks (or switch statements)

inside the client body. That makes your code clumsy.

• How you are creating the objects is hidden from the client code. This

kind of abstraction promotes security.

Figure 24-3. Exception encountered due to an invalid input

Chapter 24 Simple FaCtory pattern

475

24.2 What are the challenges associated with this pattern?
If you want to add a new animal or delete an existing animal, you need to modify

the CreateAnimal() method. This process violates the open/closed principle (which

says that a code module should be open for extension but closed for modification) of the

SOLID principles.

Note the SoliD principles were promoted by robert C. martin. there are
many online sources available. if you are interested in a quick introduction, go to
https://en.wikipedia.org/wiki/SOLID.

24.3 Can you make the factory class static?
You can, but you have to remember the restrictions associated with a static class.

For example, you cannot inherit them, and so on. It can make sense when you deal with

some value objects which do not have an implementation class or a separate interface.

It is also useful when you work with immutable classes, and your factory class doesn’t

need to return a brand-new object each time you use it.

In short, a value object is an object whose equality is based on the values rather than

the identity. The most important characteristic of a value object is that it is immutable

without an identity.

A simple real-life example can be given using five-rupee currency notes and five-

rupee coins in India. Their money values are the same, but they are different instances.

In general, a static factory class can promote global states, which are not ideal for

object-oriented programming.

Chapter 24 Simple FaCtory pattern

https://en.wikipedia.org/wiki/SOLID

477
© Vaskaran Sarcar 2020
V. Sarcar, Design Patterns in C#, https://doi.org/10.1007/978-1-4842-6062-3_25

CHAPTER 25

Null Object Pattern
This chapter covers the Null Object pattern.

 Definition
The Null Object pattern is not a GoF design pattern. I am taking the definition from

Wikipedia, which says the following.

In object-oriented computer programming, a null object is an object with
no referenced value or with defined neutral (‘null’) behavior. The null object
design pattern describes the uses of such objects and their behavior (or lack
thereof). It was first published in the Pattern Languages of Program Design
book series.

 Concept
The pattern can implement a “do-nothing” relationship, or it can provide a default

behavior when an application encounters a null object instead of a real object. With

this pattern, our core aim is to make a better solution by avoiding a “null objects check”

or “null collaborations check” through if blocks and you encapsulate the absence of

an object by providing a default behavior that does nothing. The basic structure of this

pattern is shown in Figure 25-1.

https://doi.org/10.1007/978-1-4842-6062-3_25#DOI

478

This chapter begins with a program that seems to be OK, but it has a serious

potential bug. When you analyze the bug with a potential solution, you understand the

need for the Null Object pattern. So, let’s jump to the next section.

 A Faulty Program
Let’s assume that you have two different types of vehicles: Bus and Train, and a client

can pass different input (e.g., a and b) to create a Bus object or a Train object. The

following program demonstrates this. This program runs smoothly when the input is

valid, but a potential bug is revealed when you supply an invalid input. Here’s the faulty

program.

using System;

namespace ProgramWithOnePotentialBug

{

 interface IVehicle

 {

 void Travel();

 }

Figure 25-1. The basic structure of a Null Object pattern

Chapter 25 Null ObjeCt patterN

479

 class Bus : IVehicle

 {

 public static int busCount = 0;

 public Bus()

 {

 busCount++;

 }

 public void Travel()

 {

 Console.WriteLine("Let us travel with Bus");

 }

 }

 class Train : IVehicle

 {

 public static int trainCount = 0;

 public Train()

 {

 trainCount++;

 }

 public void Travel()

 {

 Console.WriteLine("Let us travel with Train");

 }

 }

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***This program demonstrates the need of

null object pattern.***\n");

 string input = String.Empty;

 int totalObjects = 0;

Chapter 25 Null ObjeCt patterN

480

 while (input != "exit")

 {

 Console.WriteLine("Enter your choice(Type 'a' for Bus, 'b'

for Train.Type 'exit' to quit application.");

 input = Console.ReadLine();

 IVehicle vehicle = null;

 switch (input)

 {

 case "a":

 vehicle = new Bus();

 break;

 case "b":

 vehicle = new Train();

 break;

 case "exit":

 Console.WriteLine("Creating one more bus and

closing the application");

 vehicle = new Bus();

 break;

 }

 totalObjects = Bus.busCount + Train.trainCount;

 vehicle.Travel();

 Console.WriteLine($"Total objects created in the system

={totalObjects}");

 }

 }

 }

}

Chapter 25 Null ObjeCt patterN

481

 Output with Valid Input
You may have an immediate concern; when you type exit, you create an unnecessary

object. It’s true. We’ll handle it later. For now, let’s focus on the other bug, which is more

dangerous for us. Here is some output with valid input.

This program demonstrates the need of null object pattern.

Enter your choice(Type 'a' for Bus, 'b' for Train.Type 'exit' to quit

application.

a

Let us travel with Bus

Total objects created in the system =1

Enter your choice(Type 'a' for Bus, 'b' for Train.Type 'exit' to quit

application.

b

Let us travel with Train

Total objects created in the system =2

Enter your choice(Type 'a' for Bus, 'b' for Train.Type 'exit' to quit

application.

a

Let us travel with Bus

Total objects created in the system =3

Enter your choice(Type 'a' for Bus, 'b' for Train.Type 'exit' to quit

application.

 Analysis with an Unwanted Input
Let’s assume that the user has mistakenly supplied a different character, such as e, as

shown here.

Enter your choice(Type 'a' for Bus, 'b' for Train.Type 'exit' to quit

application.

e

This time, you get a runtime exception called System.NullReferenceException, as

shown in Figure 25-2.

Chapter 25 Null ObjeCt patterN

482

 A Potential Fix
The immediate remedy that may come into your mind is to do a null check before

invoking the operation, as shown here.

if (vehicle != null)

{

 vehicle.Travel();

}

 Analysis
The prior solution works in this case. But think of an enterprise application. When

you do null checks for each scenario, if you place if conditions like this in each case,

you make your code dirty. At the same time, you may notice the side effect of difficult

maintenance. The concept of Null Object pattern is useful in similar cases.

POINT TO REMEMBER

In the prior example, I can avoid creating unnecessary objects when the user types exit and

avoid the null check if I use a null conditional operator like the following:

vehicle?.Travel();

Figure 25-2. A runtime exception occurs when the user supplies an invalid input

Chapter 25 Null ObjeCt patterN

483

this operator is available in C# 6 and later versions only. Still it can be beneficial for you to

look into the implementation details of the Null Object pattern. For example, when you use

Null Object pattern, instead of doing nothing, you can supply a default behavior (that suits your

application best) for those null objects.

 Real-World Example
A washing machine works properly when there is a water supply without any internal

leakage. But suppose that on one occasion, you forget to supply the water before you

start washing the clothes, but you pressed the button that initiates washing the clothes.

The washing machine should not damage itself in such a situation; so, it can beep some

alarm to draw your attention and indicate that there is no water supply at the moment.

 Computer-World Example
Assume that in a client-server architecture, the server does calculations based on the

client input. The server needs to be intelligent enough not to initiate any calculation

unnecessarily. Before processing the input, it may want to do a cross-verification to

ensure whether it needs to start the calculation at all, or it should ignore an invalid input.

You may notice the Command pattern with a Null Object pattern in such a case.

Basically, in an enterprise application, you can avoid big number of null checks and
if/else blocks using this design pattern. The following implementation gives an overview

of this pattern.

 Implementation
Let’s modify the faulty program that we discussed before. You handle the invalid input

through a NullVehicle object this time. So, if by mistake the user supplies any invalid

data (in other words, any input other than a or b in this case), the application does

nothing; that is, it can ignore those invalid input through a NullVehicle object, which

does nothing. The class is defined as follows.

Chapter 25 Null ObjeCt patterN

484

/// <summary>

/// NullVehicle class

/// </summary>

class NullVehicle : IVehicle

{

 private static readonly NullVehicle instance = new NullVehicle();

 private NullVehicle()

 {

 nullVehicleCount++;

 }

 public static int nullVehicleCount;

 public static NullVehicle Instance

 {

 get

 {

 return instance;

 }

 }

 public void Travel()

{

 // Do Nothing

}

}

You can see that I applied the concept of Singleton design pattern when I create a

NullVehicle object. It is because there can be an infinite number of invalid input, so in

the following example, I do not want to create the NullVehicle object repeatedly. Once

there is a NullVehicle object, I’d like to reuse that object.

Note For a null object method, you need to return whatever seems sensible as
a default. In our example, you cannot travel with a vehicle that does not exist. So,
it makes sense that for the NullVehicle class, the Travel() method does
nothing.

Chapter 25 Null ObjeCt patterN

485

 Class Diagram
Figure 25-3 shows the class diagram.

Figure 25-3. Class diagram

Chapter 25 Null ObjeCt patterN

486

Figure 25-4. Solution Explorer view

 Solution Explorer View
Figure 25-4 shows the high-level structure of the program.

Chapter 25 Null ObjeCt patterN

487

 Demonstration
Here’s the complete implementation.

using System;

namespace NullObjectPattern

{

 interface IVehicle

 {

 void Travel();

 }

 /// <summary>

 /// Bus class

 /// </summary>

 class Bus : IVehicle

 {

 public static int busCount = 0;

 public Bus()

 {

 busCount++;

 }

 public void Travel()

 {

 Console.WriteLine("Let us travel with Bus.");

 }

 }

 /// <summary>

 /// Train class

 /// </summary>

 class Train : IVehicle

 {

 public static int trainCount = 0;

 public Train()

 {

 trainCount++;

 }

Chapter 25 Null ObjeCt patterN

488

 public void Travel()

 {

 Console.WriteLine("Let us travel with Train.");

 }

 }

 /// <summary>

 /// NullVehicle class

 /// </summary>

 class NullVehicle : IVehicle

 {

 private static readonly NullVehicle instance = new NullVehicle();

 private NullVehicle()

 {

 nullVehicleCount++;

 }

 public static int nullVehicleCount;

 public static NullVehicle Instance

 {

 get

 {

 return instance;

 }

 }

 public void Travel()

 {

 // Do Nothing

 }

 }

 /// <summary>

 /// Client code

 /// </summary>

Chapter 25 Null ObjeCt patterN

489

 class Client

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Null Object Pattern Demonstration.***\n");

 string input = String.Empty;

 int totalObjects = 0;

 while (input != "exit")

 {

 Console.WriteLine("Enter your choice(Type 'a' for Bus,

'b' for Train.Type 'exit' to quit) ");

 input = Console.ReadLine();

 IVehicle vehicle = null;

 switch (input)

 {

 case "a":

 vehicle = new Bus();

 break;

 case "b":

 vehicle = new Train();

 break;

 case "exit":

 Console.WriteLine("Closing the application.");

 vehicle = NullVehicle.Instance;

 break;

 default:

 Console.WriteLine("Please supply the correct

input(a/b/exit)");

 vehicle = NullVehicle.Instance;

 break;

 }

 totalObjects = Bus.busCount + Train.trainCount +

NullVehicle.nullVehicleCount;

 // No need to do null check now.

Chapter 25 Null ObjeCt patterN

490

 //if (vehicle != null)

 vehicle.Travel();

 //}

 Console.WriteLine("Total objects created in the system ={0}",

 totalObjects);

 }

 Console.ReadKey();

 }

 }

}

 Output
Here’s the output.

Null Object Pattern Demonstration.

Enter your choice(Type 'a' for Bus, 'b' for Train.Type 'exit' to quit)

a

Let us travel with Bus.

Total objects created in the system =2

Enter your choice(Type 'a' for Bus, 'b' for Train.Type 'exit' to quit)

b

Let us travel with Train.

Total objects created in the system =3

Enter your choice(Type 'a' for Bus, 'b' for Train.Type 'exit' to quit)

c

Please supply the correct input(a/b/exit)

Total objects created in the system =3

Enter your choice(Type 'a' for Bus, 'b' for Train.Type 'exit' to quit)

d

Please supply the correct input(a/b/exit)

Total objects created in the system =3

Enter your choice(Type 'a' for Bus, 'b' for Train.Type 'exit' to quit)

b

Let us travel with Train.

Chapter 25 Null ObjeCt patterN

491

Total objects created in the system =4

Enter your choice(Type 'a' for Bus, 'b' for Train.Type 'exit' to quit)

exit

Closing the application.

Total objects created in the system =4

 Analysis
I draw your attention to the following points.

• Invalid input and their effects are shown in bold.

• The objects count is not increasing because of null vehicle objects/

invalid input.

• You did not perform any null check. Still, the program execution is

not interrupted because of invalid user input.

 Q&A Session
25.1 At the beginning of the implementation, I see an additional object is

created. Is this intentional?
To save some computer memory/storage, I followed a Singleton design pattern that

supports early initialization when I constructed the NullVehicle class. You do not want

to create a NullVehicle object for each invalid input because your application may

receive a large number of invalid input. If you do not guard against the situation, a huge

number of NullVehicle objects may reside in the system (which is useless), and they can

occupy a large amount of computer memory, which in turn can cause some unwanted

side effects. (For example, the system may become slow, applications response time may

increase, etc.)

25.2 When should you use this pattern?
This pattern can be useful in the following cases.

• You do not want to encounter a NullReferenceException (for

example, if by mistake you try to invoke a method of a null object).

• You like to ignore lots of null checks in your code.

• You want to make your code cleaner and easily maintainable.

Chapter 25 Null ObjeCt patterN

492

Note You learn another use of this pattern at the end of this chapter.

25.3 What are the challenges associated with the Null Object pattern?
You need to be aware of the following scenarios.

• Most often, you may want to find and fix the root cause of a failure.

So, if you throw a NullReferenceException, that can work better

for you. You can always handle those exceptions in a try/catch

block or a try/catch/finally block and update the log information

accordingly.

• The Null Object pattern helps you to implement a default behavior

when you unconsciously want to deal with an object that is not

present at all. But trying to supply such a default behavior may not

always be appropriate.

• Incorrect implementations of the Null Object pattern can suppress

the true bug that may appear as normal in your program execution.

25.4. It looks as if null objects are working like proxies. Is this correct?
No. In general, proxies act on real objects at some point in time, and they may also

provide some behavior. But a null object should not do any such thing.

25.5. The Null Object pattern is always associated with NullReferenceException.
Is this correct?

The concept is the same, but the exception name can be different or

language-specific. For example, in Java, you can use this pattern to guard java.

lang.NullPointerException, but in a language like C#, you use it to guard System.

NullReferenceException.

Finally, I want to draw your attention to another interesting point. The Null Object

pattern can be useful in another context. For example, consider the following segment

of code.

 //A case study in another context.

 List<IVehicle> vehicleList = new List<IVehicle>();

 vehicleList.Add(new Bus());

 vehicleList.Add(new Train());

 vehicleList.Add(null);

Chapter 25 Null ObjeCt patterN

493

 foreach (IVehicle vehicle in vehicleList)

 {

 vehicle.Travel();

 }

When you use the previous code segment, you get System.NullReferenceException

again. But if you replace vehicleList.Add(null); with vehicleList.Add(NullVehicle.

Instance);, there is no runtime exception. So, you can loop through easily, which is

another important usage of this pattern.

Chapter 25 Null ObjeCt patterN

495
© Vaskaran Sarcar 2020
V. Sarcar, Design Patterns in C#, https://doi.org/10.1007/978-1-4842-6062-3_26

CHAPTER 26

MVC Pattern
This chapter covers the MVC pattern.

 Definition
MVC (model-view-controller) is an architectural pattern. This pattern is commonly used

in web applications and in developing powerful user interfaces. Trygve Reenskaug first

described MVC in 1979 in a paper titled “Applications programming in Smalltalk-80TM:

How to use Model-View-Controller,” which was written before the existence of the World

Wide Web. So, at that time, there was no concept of web applications. But modern-day

applications are an adaptation of that original concept. Instead of treating it a true design

pattern, some developers prefer to say this an “MVC architecture.”

Wikipedia defines it as follows.

Model-view-controller (MVC) is an architectural pattern commonly
used for developing user interfaces that divides an application into three
interconnected parts. This is done to separate internal representations of
information from the way information is presented to and accepted by
the user. The MVC design pattern decouples these major components
allowing for efficient code reuse and parallel development. (https://
en.wikipedia.org/wiki/Model-view-controller)

My favorite description of MVC comes from Connelly Barnes, who said,

An easy way to understand MVC: the model is the data, the view is the
window on the screen, and the controller is the glue between the two.
(http://wiki.c2.com/?ModelViewController)

https://doi.org/10.1007/978-1-4842-6062-3_26#DOI
https://en.wikipedia.org/wiki/Model-view-controller
https://en.wikipedia.org/wiki/Model-view-controller
http://wiki.c2.com/?ModelViewController

496

 Concept
Using this pattern, you separate the user interface logic from the business logic and

decouple the major components in such a way that those can be reused efficiently. This

approach promotes parallel development.

From the definition, it is apparent that the pattern consists of these major

components: model, view, and controller. The controller is placed between the view

and model in such a way that they can communicate with each other only through the

controller. This model separates the mechanism for how the data is displayed from the

mechanism for how the data is manipulated. Figure 26-1 shows the MVC pattern.

 Key Points to Remember
These are brief descriptions of the key components in this pattern.

• View represents the final output. It can also accept user input. It

is a presentation layer, and you can think of it as a graphical user

interface (GUI). You can design it with various technologies. For

example, in a .NET application, you can use HTML, CSS, WPF, and so

on, and for a Java application, you can use AWT, Swing, JSF, JavaFX,

and so forth.

Figure 26-1. A typical MVC architecture

Chapter 26 MVC pattern

497

• The model manages the data and business logic, and it acts as the

actual brain of your application. It manages the data and business

logic. It knows how to store, manage, or manipulate the data

and handle the requests that come from the controller. But this

component is separated from the view component. A typical example

is a database, a file system, or a similar kind of storage. It can be

designed with Oracle, SQL Server, DB2, Hadoop, MySQL, and so on.

• The controller is the intermediary. It accepts a user’s input from the

view component and passes the request to the model. When it gets

a response from the model, it passes the data to a view. It can be

designed with C# .NET, ASP.NET, VB.NET, Core Java, JSP, Servlets,

PHP, Ruby, Python, and so on.

You may notice varying implementations in different applications. Here are some

examples.

• You can have multiple views.

• Views can pass runtime values (for example, using JavaScript) to

controllers.

• Your controller can validate the user’s input.

• Your controller can receive input in various ways. For example, it can

get input from a web request via a URL, or input can be passed by

clicking a Submit button on a form.

• In some applications, you may notice that the model can update the

view component.

In short, you need to use this pattern to support your own need. Figures 26-2, 26-3,

and 26-4 show known variations of an MVC architecture.

 Variation 1
Figure 26-2 shows variation 1.

Chapter 26 MVC pattern

498

 Variation 2
Figure 26-3 shows variation 2.

 Variation 3
Figure 26-4 shows variation 3.

Figure 26-2. A typical MVC framework

Figure 26-3. An MVC framework with multiple views

Chapter 26 MVC pattern

499

One of the best descriptions for MVC comes from wiki.c2.com (http://wiki.c2.

com/?ModelViewController), where it says, “We need smart models, thin controllers,

and dumb views.”

 Real-World Example
Consider our Template Method pattern’s real-life example. But this time, let’s interpret

it differently. I said that in a restaurant, based on customer input, a chef adjusts the taste

and makes the final dish. But you know that the customers do not place their orders

directly with the chef. The customers see the menu card (View), may consult with the

waiter/waitress, and then place the order. The waiter passes the order slip to the chef

who gathers the required materials from the restaurant’s kitchen (similar to storehouses

or, computer databases). Once prepared, the waiter carries the plate to the customer’s

table. So, you can consider the role of a waiter as the controller, the chefs in the kitchen

as the model, and the food preparation materials as the data.

Figure 26-4. An MVC pattern implemented with an Observer pattern/event-
based mechanism

Chapter 26 MVC pattern

http://wiki.c2.com
http://wiki.c2.com/?ModelViewController
http://wiki.c2.com/?ModelViewController

500

 Computer-World Example
Many web programming frameworks use the concept of the MVC framework. Typical

examples include Django, Ruby on Rails, ASP.NET, and so on. A typical ASP.NET MVC

project can have the following view shown in Figure 26-5.

Figure 26-5. Solution Explorer view of a typical ASP.NET MVC Project

Chapter 26 MVC pattern

501

POINTS TO NOTE

Different technologies follow different structures, so you don't need a folder structure with the

strict naming convention shown in Figure 26-5.

 Implementation
For simplicity and to match our theory, I also divided the upcoming implementation

into three major parts: model, view, and controller. Once you note the Solution Explorer

view, you can identify the separate folders created to accomplish this task. Here are some

important points.

• IModel, IView, and IController are three interfaces that are

implemented by the concrete classes EmployeeModel, ConsoleView,

and EmployeeController, respectively. Seeing these names, you

can assume that these are representatives of the model, view, and

controller layers of our MVC architecture.

• In this application, the requirement is very simple. Some employees

need to register on an application. Initially, the application has three

different registered employees: Amit, Jon, and Sam. These employees

have ID’s as E1, E2, and E3. So, you see the following constructor:

public EmployeeModel()

{

 // Adding 3 employees at the beginning.

 enrolledEmployees = new List<Employee>();

 enrolledEmployees.Add(new Employee("Amit", "E1"));

 enrolledEmployees.Add(new Employee("John", "E2"));

 enrolledEmployees.Add(new Employee("Sam", "E3"));

}

Chapter 26 MVC pattern

502

• At any point in time, you should be able to see the enrolled

employees in the system. In the client code, you invoke

DisplayEnrolledEmployees() on a Controller object as follows:

controller.DisplayEnrolledEmployees();

Then the controller passes the call to view layer as follows:

view.ShowEnrolledEmployees(enrolledEmployees);

And you see that a concrete implementor of View Interface

(ConsoleView.cs) describes the method as follows:

public void ShowEnrolledEmployees (List<Employee>

enrolledEmployees)

{

 Console.WriteLine("\n ***This is a console view of

currently enrolled employees.*** ");

 foreach (Employee emp in enrolledEmployees)

 {

 Console.WriteLine(emp);

 }

 Console.WriteLine("---------------------");

}

• You can add a new employee or delete an employee from the

registered employees list. The AddEmployeeToModel(Employee

employee) and RemoveEmployeeFromModel(string

employeeIdToRemove) methods are used for this purpose. Let’s look

at the method signature of RemoveEmployeeFromModel(...). To

delete an employee, you need to supply the employee ID (which is

nothing more than a string). But if the employee ID is not found, the

application ignores this delete request.

• A simple check is added in the Employee class to ensure that you

are not adding an employee with the same ID repeatedly in the

application.

Chapter 26 MVC pattern

503

Now go through the implementation. Yes, it’s big, but when you analyze it part

by part with the help of the previous bullet points and the supporting diagrams, you

should not face any difficulties with understanding the code. You can also consider the

comments for your immediate reference.

POINTS TO NOTE

typically, you want to use MVC with technologies that offer built-in support and perform much

of the groundwork. For example, when you use aSp.net (or a similar technology) to implement

the MVC pattern because you have a lot of built-in support. In these cases, you need to learn

the new terminologies.

throughout this book, I use console applications for design pattern implementations. Let’s

continue to use the same for the upcoming implementation, because our focus is only on MVC

architecture.

 Class Diagram
Figure 26-6 shows the class diagram.

Chapter 26 MVC pattern

504

Fi
gu

re
 2

6-
6.

 C
la

ss
 d

ia
gr

am

Chapter 26 MVC pattern

505

 Solution Explorer View
Figure 26-7 shows the high-level structure of the program.

Figure 26-7. Solution Explorer view

Chapter 26 MVC pattern

506

 Demonstration 1
Here is the complete demonstration.

Contents in Model folder

// Employee.cs

namespace MVCPattern.Model

{

 // The key "data" in this application

 public class Employee

 {

 private string empName;

 private string empId;

 public string GetEmpName()

 {

 return empName;

 }

 public string GetEmpId()

 {

 return empId;

 }

 public Employee(string empName, string empId)

 {

 this.empName = empName;

 this.empId = empId;

 }

 public override string ToString()

 {

 return $"{empName} is enrolled with id : {empId}.";

 }

 }

}

Chapter 26 MVC pattern

507

// Model.cs

using System.Collections.Generic;

namespace MVCPattern.Model

{

 public interface IModel

 {

 List<Employee> GetEnrolledEmployeeDetailsFromModel();

 void AddEmployeeToModel(Employee employeee);

 void RemoveEmployeeFromModel(string employeeId);

 }

}

// EmployeeModel.cs

using System;

using System.Collections.Generic;

namespace MVCPattern.Model

{

 public class EmployeeModel : IModel

 {

 List<Employee> enrolledEmployees;

 public EmployeeModel()

 {

 // Adding 3 employees at the beginning.

 enrolledEmployees = new List<Employee>();

 enrolledEmployees.Add(new Employee("Amit", "E1"));

 enrolledEmployees.Add(new Employee("John", "E2"));

 enrolledEmployees.Add(new Employee("Sam", "E3"));

 }

 public List<Employee> GetEnrolledEmployeeDetailsFromModel()

 {

 return enrolledEmployees;

 }

Chapter 26 MVC pattern

508

 // Adding an employee to the model(registered employee list)

 public void AddEmployeeToModel(Employee employee)

 {

 Console.WriteLine($"\nTrying to add an employee to the

registered list.The employee name is {employee.GetEmpName()}

and id is {employee.GetEmpId()}.");

 if (!enrolledEmployees.Contains(employee))

 {

 enrolledEmployees.Add(employee);

 Console.WriteLine(employee + " [added recently.]");

 }

 else

 {

 Console.WriteLine("This employee is already added in the

registered list.So, ignoring the request of addition.");

 }

 }

 // Removing an employee from model(registered employee list)

 public void RemoveEmployeeFromModel(string employeeIdToRemove)

 {

 Console.WriteLine($"\nTrying to remove an employee from the

registered list.The employee id is {employeeIdToRemove}.");

 Employee emp = FindEmployeeWithId(employeeIdToRemove);

 if (emp != null)

 {

 Console.WriteLine("Removing this employee.");

 enrolledEmployees.Remove(emp);

 }

 else

 {

 Console.WriteLine($"At present, there is no employee with

id {employeeIdToRemove}.Ignoring this request.");

 }

 }

Chapter 26 MVC pattern

509

 Employee FindEmployeeWithId(string employeeIdToRemove)

 {

 Employee removeEmp = null;

 foreach (Employee emp in enrolledEmployees)

 {

 if (emp.GetEmpId().Equals(employeeIdToRemove))

 {

 Console.WriteLine($" Employee Found.{emp.GetEmpName()}

has id: { employeeIdToRemove}.");

 removeEmp = emp;

 }

 }

 return removeEmp;

 }

 }

}

 Contents in View folder

// View.cs

using MVCPattern.Model;

using System.Collections.Generic;

namespace MVCPattern.View

{

 public interface IView

 {

 void ShowEnrolledEmployees(List<Employee> enrolledEmployees);

 }

}

// ConsoleView.cs

using System;

using System.Collections.Generic;

using MVCPattern.Model;

Chapter 26 MVC pattern

510

namespace MVCPattern.View

{

 public class ConsoleView : IView

 {

 public void ShowEnrolledEmployees(List<Employee> enrolledEmployees)

 {

 Console.WriteLine("\n ***This is a console view of currently

enrolled employees.*** ");

 foreach (Employee emp in enrolledEmployees)

 {

 Console.WriteLine(emp);

 }

 Console.WriteLine("---------------------");

 }

 }

}

 Contents in Controller folder

// Controller.cs

using MVCPattern.Model;

namespace MVCPattern.Controller

{

 interface IController

 {

 void DisplayEnrolledEmployees();

 void AddEmployee(Employee employee);

 void RemoveEmployee(string employeeId);

 }

}

// EmployeeController.cs

using System.Collections.Generic;

using MVCPattern.Model;

using MVCPattern.View;

Chapter 26 MVC pattern

511

namespace MVCPattern.Controller

{

 public class EmployeeController : IController

 {

 IModel model;

 IView view;

 public EmployeeController(IModel model, IView view)

 {

 this.model = model;

 this.view = view;

 }

 public void DisplayEnrolledEmployees()

 {

 // Get data from Model

 List<Employee> enrolledEmployees = model.

GetEnrolledEmployeeDetailsFromModel();

 // Connect to View

 view.ShowEnrolledEmployees(enrolledEmployees);

 }

 // Sending a request to model to add an employee to the list.

 public void AddEmployee(Employee employee)

 {

 model.AddEmployeeToModel(employee);

 }

 // Sending a request to model to remove an employee from the list.

 public void RemoveEmployee(string employeeId)

 {

 model.RemoveEmployeeFromModel(employeeId);

 }

 }

}

Chapter 26 MVC pattern

512

 Client code

// Program.cs

using MVCPattern.Controller;

using MVCPattern.Model;

using MVCPattern.View;

using System;

namespace MVCPattern

{

 class Client

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***MVC architecture Demo***\n");

 // Model

 IModel model = new EmployeeModel();

 // View

 IView view = new ConsoleView();

 // Controller

 IController controller = new EmployeeController(model, view);

 controller.DisplayEnrolledEmployees();

 // Add an employee

 Employee empToAdd = new Employee("Kevin", "E4");

 controller.AddEmployee(empToAdd);

 // Printing the current details

 controller.DisplayEnrolledEmployees();

 // Remove an existing employee using the employee id.

 controller.RemoveEmployee("E2");

 // Printing the current details

 controller.DisplayEnrolledEmployees();

Chapter 26 MVC pattern

513

 /* Cannot remove an employee who does not belong to the

list.*/

 controller.RemoveEmployee("E5");

 // Printing the current details

 controller.DisplayEnrolledEmployees();

 // Avoiding a duplicate entry

 controller.AddEmployee(empToAdd);

 // Printing the current details

 controller.DisplayEnrolledEmployees();

 /* This segment is added to discuss a question in "Q&A Session"

and initially commented out. */

 // view = new MobileDeviceView();

 // controller = new EmployeeController(model, view);

 // controller.DisplayEnrolledEmployees();

 Console.ReadKey();

 }

 }

}

 Output
Here is the output.

MVC architecture Demo

 This is a console view of currently enrolled employees.

Amit is enrolled with id : E1.

John is enrolled with id : E2.

Sam is enrolled with id : E3.

Trying to add an employee to the registered list.The employee name is Kevin

and id is E4.

Kevin is enrolled with id : E4. [added recently.]

Chapter 26 MVC pattern

514

 This is a console view of currently enrolled employees.

Amit is enrolled with id : E1.

John is enrolled with id : E2.

Sam is enrolled with id : E3.

Kevin is enrolled with id : E4.

Trying to remove an employee from the registered list.The employee id is E2.

 Employee Found.John has id: E2.

Removing this employee.

 This is a console view of currently enrolled employees.

Amit is enrolled with id : E1.

Sam is enrolled with id : E3.

Kevin is enrolled with id : E4.

Trying to remove an employee from the registered list.The employee id is E5.

At present, there is no employee with id E5.Ignoring this request.

 This is a console view of currently enrolled employees.

Amit is enrolled with id : E1.

Sam is enrolled with id : E3.

Kevin is enrolled with id : E4.

Trying to add an employee to the registered list.The employee name is Kevin

and id is E4.

This employee is already added in the registered list.So, ignoring the

request of addition.

 This is a console view of currently enrolled employees.

Amit is enrolled with id : E1.

Sam is enrolled with id : E3.

Kevin is enrolled with id : E4.

Chapter 26 MVC pattern

515

 Q&A Session
26.1 Suppose that you have a programmer, a DBA, and a graphic designer. Can

you predict their roles in an MVC architecture?
The graphic designer designs the view layer, the DBA creates the model, and the

programmer works to make an intelligent controller.

26.2 What are the key advantages of using the MVC design pattern?
Some important advantages are as follows.

• High cohesion and low coupling are the benefits of MVC. You have

probably noticed that tight coupling between the model and the view

is easily removed in this pattern. So, the application can be easily

extendable and reusable.

• The pattern supports parallel development.

• You can also accommodate multiple runtime views.

26.3 What are the challenges associated with the MVC pattern?
Here are some challenges.

• It requires highly skilled personnel.

• For a tiny application, it may not be suitable.

• Developers may need to be familiar with multiple languages,

platforms, and technologies.

• Multi-artifact consistency is a big concern because you are separating

the overall project into three major parts.

26.4 Can you provide multiple views in this implementation?
Sure. Let’s add a new shorter view called MobileDeviceView in the application. Let’s

add this class inside the View folder as follows.

using System;

using System.Collections.Generic;

using MVCPattern.Model;

namespace MVCPattern.View

{

Chapter 26 MVC pattern

516

 public class MobileDeviceView:IView

 {

 public void ShowEnrolledEmployees(List<Employee> enrolledEmployees)

 {

 Console.WriteLine("\n +++This is a mobile device view of

currently enrolled employees.+++ ");

 foreach (Employee emp in enrolledEmployees)

 {

 Console.WriteLine(emp.GetEmpId() + "\t" + emp.

GetEmpName());

 }

 Console.WriteLine("+++++++++++++++++++++");

 }

 }

}

Once you add this class, your modified Solution Explorer view should be similar to

Figure 26-8.

Chapter 26 MVC pattern

517

Now add the following segment of code at the end of your client code(Refer the

comment for your reference).

/* This segment is added to discuss a question in "Q&A Session and was

 initially commented out.Now I’m uncommenting the following three lines

of code."

*/

view = new MobileDeviceView();

controller = new EmployeeController(model, view);

controller.DisplayEnrolledEmployees();

Figure 26-8. Modified Solution Explorer view

Chapter 26 MVC pattern

518

Now if you run the application, you see the modified output.

 Modified Output
Here is the modified output. The last part of your output shows the effects of the new

changes. The changes are shown in bold.

MVC architecture Demo

 This is a console view of currently enrolled employees.

Amit is enrolled with id : E1.

John is enrolled with id : E2.

Sam is enrolled with id : E3.

Trying to add an employee to the registered list.The employee name is Kevin

and id is E4.

Kevin is enrolled with id : E4. [added recently.]

 This is a console view of currently enrolled employees.

Amit is enrolled with id : E1.

John is enrolled with id : E2.

Sam is enrolled with id : E3.

Kevin is enrolled with id : E4.

Trying to remove an employee from the registered list.The employee id is E2.

 Employee Found.John has id: E2.

Removing this employee.

 This is a console view of currently enrolled employees.

Amit is enrolled with id : E1.

Sam is enrolled with id : E3.

Kevin is enrolled with id : E4.

Trying to remove an employee from the registered list.The employee id is E5.

At present, there is no employee with id E5.Ignoring this request.

Chapter 26 MVC pattern

519

 This is a console view of currently enrolled employees.

Amit is enrolled with id : E1.

Sam is enrolled with id : E3.

Kevin is enrolled with id : E4.

Trying to add an employee to the registered list.The employee name is Kevin

and id is E4.

This employee is already added in the registered list.So, ignoring the

request of addition.

 This is a console view of currently enrolled employees.

Amit is enrolled with id : E1.

Sam is enrolled with id : E3.

Kevin is enrolled with id : E4.

 +++This is a mobile device view of currently enrolled employees.+++

E1 Amit

E3 Sam

E4 Kevin

+++++++++++++++++++++

Chapter 26 MVC pattern

521
© Vaskaran Sarcar 2020
V. Sarcar, Design Patterns in C#, https://doi.org/10.1007/978-1-4842-6062-3_27

CHAPTER 27

Patterns in Asynchronous
Programming
You see many interesting patterns in asynchronous programming, which is tough and

challenging but interesting. It is often referred to as asynchrony. The overall concept

did not evolve in one day, it took time, and in C# 5.0, you got async and await keywords

to make it easier. Before that, programmers implemented the concept with various

techniques. Each technique has its pros and cons. The goal of this chapter to introduce

you with different asynchronous programming patterns.

 Overview
To begin, let’s discuss asynchronous programming. In simple terms, you take a code

segment in your application and run it on a separate thread. What is the key benefit?

The simple answer is that you can free the original thread and let it continue to do

its remaining tasks, while in a separate thread, you can perform a different task. This

mechanism helps you develop modern-day applications; for example, when you

implement a highly responsive user interface, these concepts are very useful.

POINTS TO REMEMBER

Broadly you notice three different patterns in asynchronous programming which are as

follows:

• IAsyncResult Pattern: Alternatively, it is known as the Asynchronous

Programming Model (APM). In this pattern, at the core, you see the

IAsyncResult interface to support the asynchronous behavior. In a

synchronous model, if you have a synchronous method called XXX(), in the

https://doi.org/10.1007/978-1-4842-6062-3_27#DOI

522

asynchronous version, you see the BeginXXX() and EndXXX() methods for

the corresponding synchronous method. For example, in synchronous version,

if you have the Read() method to support read operation; in asynchronous

programming, you normally have BeginRead() and EndRead() methods to

support the corresponding read operation asynchronously. Using this concept,

from demonstration 5 to demonstration 7, you see the BeginInvoke and

EndInvoke methods. But this pattern is not recommended for upcoming and

new development.

• Event-based Asynchronous Pattern (EAP): This pattern came with the .NET

Framework 2.0. It is based on the event mechanism. Here you see the method

name with the Async suffix, one or multiple events, and EventArg derived

types. This pattern is still in use, but not recommended for new development.

• Task-based Asynchronous Pattern (TAP): It first appeared in.NET

Framework 4; it is the recommended practice for asynchronous programming.

In C#, you often see the async and await keywords in this pattern.

To keep the chapter short, I could have omitted the discussions on APM and EAP, but I discuss

them in this chapter so that you understand legacy code. At the same time, you discover the

pathway of the continuous development of asynchronous programming.

To understand asynchronous programming better, let’s start our discussion with its

counterpart: synchronous programming. A synchronous approach is straightforward,

and the code paths are easy to understand, but in this kind of programming, you need

to wait to get the results from a particular segment of code, and until you cannot do

anything fruitful. For example, when a segment of code tries to open a webpage that

takes time to load, or when a segment of code is exercising a long-running algorithm,

and so forth. In these cases, if you follow the synchronous approach, you need to sit idle.

As a result, even if your computer is super fast and it has more computational power, you

are not using its full potential, which is not a good idea. Therefore, to support modern-

day demands and build highly responsive applications, the need for asynchronous

programming is growing day by day. So, you benefit when you know different

implementation patterns in this category.

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

523

 Using Synchronous Approach
In demonstration 1, I execute a simple program, starting with a synchronous

approach. Here there are two simple methods called ExecuteMethodOne() and

ExecuteMethodTwo(). Inside the Main() method, I call these methods synchronously

(i.e., I invoked ExecuteMethodOne() first and then ExecuteMethodTwo()). To focus on the

key discussion, I made these methods very simple. I put simple sleep statements inside

them to ensure that the jobs performed by these methods take a measurable amount

of time to complete. Once you run the application and notice the output, you see that

only after ExecuteMethodOne() finishes its execution, can ExecuteMethodTwo() begin its

execution. In this case, the Main() method cannot complete until the methods complete

their executions.

Note Throughout this chapter, you see these methods with slight variations.
I tried to maintain similar methods so that you can compare different techniques
of asynchronous programming easily. For the simple demonstration purposes,
in these examples, I assume ExecuteMethodOne() takes more time to finish
because it’ll perform some lengthy operation. so, I forced a relatively long sleep
inside it. on the contrary, I assume that ExecuteMethodTwo() performs a small
task, so I placed a relatively short sleep inside it.

 Demonstration 1
Here is the complete demonstration.

using System;

using System.Threading;

namespace SynchronousProgrammingExample

{

 class Program

 {

 static void Main(string[] args)

 {

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

524

 Console.WriteLine("***A Synchronous Program

Demonstration.***");

 Console.WriteLine("ExecuteMethodTwo() needs to wait for

ExecuteMethodOne() to finish first.");

 ExecuteMethodOne();

 ExecuteMethodTwo();

 Console.WriteLine("End Main().");

 Console.ReadKey();

 }

 // First Method

 private static void ExecuteMethodOne()

 {

 Console.WriteLine("MethodOne has started.");

 // Some big task

 Thread.Sleep(1000);

 Console.WriteLine("MethodOne has finished.");

 }

 // Second Method

 private static void ExecuteMethodTwo()

 {

 Console.WriteLine("MethodTwo has started.");

 // Some small task

 Thread.Sleep(100);

 Console.WriteLine("MethodTwo has finished.");

 }

 }

}

 Output

Here is the output.

A Synchronous Program Demonstration.

ExecuteMethodTwo() needs to wait for ExecuteMethodOne() to finish first.

MethodOne has started.

MethodOne has finished.

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

525

MethodTwo has started.

MethodTwo has finished.

End Main().

 Using Thread Class
If you look closely at the methods in demonstration 1, you find that those methods were

not dependent on each other. If you can execute them in parallel, the response time of

your application is improved, and you can reduce the overall execution time. So, let’s

find some better approaches.

You can implement the concepts of multithreading in this case. Demonstration 2 is

a simple solution using threads. It shows substituting the ExecuteMethodOne() method

inside a new thread.

 Demonstration 2
using System;

using System.Threading;

namespace UsingThreadClass

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Asynchronous Programming using Thread

class.***");

 //ExecuteMethodOne();

 //Old approach.Creating a separate thread for the following

//task(i.e. ExecuteMethodOne.)

 Thread newThread = new Thread(() =>

 {

 Console.WriteLine("MethodOne has started on a separate

thread.");

 // Some big task

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

526

 Thread.Sleep(1000);

 Console.WriteLine("MethodOne has finished.");

 }

);

 newThread.Start();

 /*

 Taking a small sleep to increase the probability of

executing ExecuteMethodOne() before ExecuteMethodTwo().

 */

 Thread.Sleep(20);

 ExecuteMethodTwo();

 Console.WriteLine("End Main().");

 Console.ReadKey();

 }

 // Second Method

 private static void ExecuteMethodTwo()

 {

 Console.WriteLine("MethodTwo has started.");

 // Some small task

 Thread.Sleep(100);

 Console.WriteLine("MethodTwo has finished.");

 }

 }

}

 Output

The following is a possible output.

Asynchronous Programming using Thread class.

MethodOne has started on a separate thread.

MethodTwo has started.

MethodTwo has finished.

End Main().

MethodOne has finished.

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

527

 Analysis

Notice that although ExecuteMethodOne() started early, ExecuteMethodTwo() did not

wait for ExecuteMethodOne() to finish its execution. Also, since ExecuteMethodTwo()

is doing very little (sleep time is 100 milliseconds), it was able to finish before

ExecuteMethodOne() finished its execution. Not only this, since the main thread was not

blocked, it was able to continue its execution.

 Q&A Session
27.1 Why do you put a sleep statement before the execution of Method2() inside

Main?
Good catch. It was not necessary, but in some cases, you may notice that even

though you try to start ExecuteMethodOne() to execute on a separate thread before

ExecuteMethodTwo() in the current thread, it doesn’t happen. As a result, you may notice

the following output.

Asynchronous Programming using Thread class.

MethodTwo has started.

MethodOne has started in a separate thread.

MethodTwo has finished.

End Main().

MethodOne has finished.

This simple sleep statement helps you increase the probability of starting

ExecuteMethodOne() before ExecuteMethodTwo() in this example.

 Using ThreadPool Class
Creating threads directly in a real-world application is normally discouraged. Some key

reasons behind this are as follows.

• Maintaining too many threads incur tough and costly operations.

• A large amount of time is wasted due to context switching, instead of

doing real work.

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

528

To avoid directly creating threads, C# gives you the facility to use the built-in

ThreadPool class. With this class, you can use the existing threads, which can be reused

to serve your purpose. The ThreadPool class is very effective in maintaining the optimal

number of threads in your application. So, if needed, you can execute some of your tasks

asynchronously using this facility.

ThreadPool is a static class that contains some static methods; some of them have

an overloaded version too. For your quick reference, Figure 27-1 is a partial screenshot

from Visual Studio IDE that shows the methods in the ThreadPool class.

In this section, our focus is on the QueueUserWorkItem method. Figure 27-1 shows

that this method has two overloaded versions. Now to know the details of this method,

let’s expand the method description in Visual Studio. For example, once you expand the

first overloaded version of this method, you notice the following.

//

// Summary:

// Queues a method for execution. The method executes when a thread

// pool thread becomes available.

//

Figure 27-1. A screenshot of ThreadPool class from Visual Studio 2019 IDE

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

529

// Parameters:

// callBack:

// A System.Threading.WaitCallback that represents the method to be

// executed.

//

// Returns:

// true if the method is successfully queued; System.NotSupportedException

// is thrown if the work item could not be queued.

//

// Exceptions:

// T:System.ArgumentNullException:

// callBack is null.

//

// T:System.NotSupportedException:

// The common language runtime (CLR) is hosted, and the host does not

// support this action.

[SecuritySafeCritical]

public static bool QueueUserWorkItem(WaitCallback callBack);

If you further investigate the method parameter, you find that WaitCallBack is a

delegate with the following description.

//

// Summary:

// Represents a callback method to be executed by a thread pool thread.

//

// Parameters:

// state:

// An object containing information to be used by the callback method.

[ComVisible(true)]

public delegate void WaitCallback(object state);

The second overloaded version of QueueUserWorkItem can take an additional object

parameter named state. It is as follows.

public static bool QueueUserWorkItem(WaitCallback callBack, object state);

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

530

It tells that using this overloaded version, you can pass some valuable data to your

method through this parameter. In the upcoming demonstration, I use both overloaded

versions, and that’s why, in the upcoming example, in addition to ExecuteMethodOne()

and ExecuteMethodTwo() (which you saw in the previous demonstrations), I introduce

another method called ExecuteMethodThree() in which I pass an object parameter.

People often use the words- arguments and parameter interchangeably. But an
expert programmer is often particular about this. The variable(s) used in a method
definition is called parameters of the method. For example, if you see a method
definition inside a class something like the following:

public void Sum(int firstNumber,int secondNumber)

you say that the firstNumber and secondNumber are the parameters of the method
sum. Now assume you have an object of the class, say ob. so, when you invoke
the method using the following line:

ob.Sum(1,2)

you say that 1 and 2 are the arguments that you’ve passed to the sum method.

In short, you can say that we pass the arguments to a method, and these values
are assigned to the method parameters. Following these definitions, I should say in
my comments that I have passed 10 as an argument to ExecuteMethodThree.
But for the sake of simplicity, often programmers do not emphasize on these terms
too much, and you may see these terms are used interchangeably.

 Demonstration 3
To use the QueueUserWorkItem method effectively, you need to use a method that

matches a WaitCallBack delegate signature. In the following demonstration, I

queue two methods in a ThreadPool. In demonstration 1 and demonstration 2,

ExecuteMethodTwo() did not accept any parameter. So, if you want to use this method as

it is and pass it to QueueUserWorkItem, you get the following compilation error.

No overload for 'ExecuteMethodTwo' matches delegate 'WaitCallback'

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

531

So, let’s modify the ExecuteMethodTwo() method with a dummy object parameter

as follows. (I kept the comments for your reference.)

/*

The following method's signature should match

the delegate WaitCallback.It is as follows:

public delegate void WaitCallback(object state)

*/

private static void ExecuteMethodTwo(object state)

{

 Console.WriteLine("--MethodTwo has started.");

 // Some small task

 Thread.Sleep(100);

 Console.WriteLine("--MethodTwo has finished.");

}

Let’s now introduce another method named ExecuteMethodThree(...), which truly

uses the parameter. This method is described as follows.

private static void ExecuteMethodThree(object number)

{

 Console.WriteLine("---MethodThree has started.");

 int upperLimit = (int)number;

 for (int i = 0; i < upperLimit; i++)

 {

 Console.WriteLine("---MethodThree prints 3.0{0}", i);

 }

 Thread.Sleep(100);

 Console.WriteLine("---MethodThree has finished.");

}

Now go through the following demonstration and corresponding output.

using System;

using System.Threading;

namespace UsingThreadPool

{

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

532

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Asynchronous Programming using ThreadPool

class.***");

 // Using Threadpool

 // Not passing any argument to ExecuteMethodTwo

 ThreadPool.QueueUserWorkItem(new WaitCallback(ExecuteMethodTwo));

 /*

 Passing 10 as the argument to

 ExecuteMethodThree.

 */

 ThreadPool.QueueUserWorkItem(new WaitCallback(ExecuteMethod

Three), 10);

 ExecuteMethodOne();

 Console.WriteLine("End Main().");

 Console.ReadKey();

 }

 private static void ExecuteMethodOne()

 {

 Console.WriteLine("-MethodOne has started.");

 // Some big task

 Thread.Sleep(1000);

 Console.WriteLine("-MethodOne has finished.");

 }

 /*

 The following method's signature should match

 the delegate WaitCallback.It is as follows:

 public delegate void WaitCallback(object state)

 */

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

533

 private static void ExecuteMethodTwo(object state)

 {

 Console.WriteLine("--MethodTwo has started.");

 // Some small task

 Thread.Sleep(100);

 Console.WriteLine("--MethodTwo has finished.");

 }

 /*

 The following method has a parameter.

 This method's signature also matches the WaitCallBack

 delegate signature.

 */

 private static void ExecuteMethodThree(object number)

 {

 Console.WriteLine("---MethodThree has started.");

 int upperLimit = (int)number;

 for (int i = 0; i < upperLimit; i++)

 {

 Console.WriteLine($"---MethodThree prints 3.0{i}");

 }

 Thread.Sleep(100);

 Console.WriteLine("---MethodThree has finished.");

 }

 }

}

 Output

The following is a possible output.

Asynchronous Programming using ThreadPool class.

-MethodOne has started.

--MethodTwo has started.

---MethodThree has started.

---MethodThree prints 3.00

---MethodThree prints 3.01

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

534

---MethodThree prints 3.02

---MethodThree prints 3.03

---MethodThree prints 3.04

---MethodThree prints 3.05

---MethodThree prints 3.06

---MethodThree prints 3.07

---MethodThree prints 3.08

---MethodThree prints 3.09

--MethodTwo has finished.

---MethodThree has finished.

-MethodOne has finished.

End Main().

 Q&A Session
27.2 Using the simple delegate instantiation technique, if I use the following first

line instead of the second line, will the application compile and run?

ThreadPool.QueueUserWorkItem(ExecuteMethodTwo);

ThreadPool.QueueUserWorkItem(new WaitCallback(ExecuteMethodTwo));

Yes, but since you are learning to use the WaitCallback delegate now, I used the

detailed way of instantiation to draw your special attention to it.

 Using Lambda Expression with the ThreadPool
Class
If you like lambda expressions, you can use it in a similar context. For example, in the

previous demonstration, you can replace ExecuteMethodThree(...) using the lambda

expression as follows.

// Using lambda Expression

// Here the method needs a parameter(input).

// Passing 10 as an argument to ExecuteMethodThree

ThreadPool.QueueUserWorkItem((number) =>

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

535

{

 Console.WriteLine("--MethodThree has started.");

 int upperLimit = (int)number;

 for (int i = 0; i < upperLimit; i++)

 {

 Console.WriteLine("---MethodThree prints 3.0{0}", i);

 }

 Thread.Sleep(100);

 Console.WriteLine("--MethodThree has finished.");

 }, 10

);

So, in the previous demonstration, you can comment out the following line and

replace ExecuteMethodThree(...) with the lambda expression introduced earlier.

ThreadPool.QueueUserWorkItem(new WaitCallback(ExecuteMethodThree), 10);

If you execute the program again, you get a similar output. For your reference, I

present the full implementation in demonstration 4.

 Demonstration 4
using System;

using System.Threading;

namespace UsingThreadPoolWithLambdaExpression

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Asynchronous Programming

Demonstration.***");

 Console.WriteLine("***Using ThreadPool with Lambda

Expression.***");

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

536

 // Using Threadpool

 // Not passing any parameter for ExecuteMethodTwo

 ThreadPool.QueueUserWorkItem(ExecuteMethodTwo);

 // Using lambda Expression

 // Here the method needs a parameter(input).

 // Passing 10 as an argument to ExecuteMethodThree

 ThreadPool.QueueUserWorkItem((number) =>

 {

 Console.WriteLine("--MethodThree has started.");

 int upperLimit = (int)number;

 for (int i = 0; i < upperLimit; i++)

 {

 Console.WriteLine("---MethodThree prints 3.0{0}", i);

 }

 Thread.Sleep(100);

 Console.WriteLine("--MethodThree has finished.");

 }, 10

);

 ExecuteMethodOne();

 Console.WriteLine("End Main().");

 Console.ReadKey();

 }

 /// <summary>

 /// ExecuteMethodOne()

 /// </summary>

 private static void ExecuteMethodOne()

 {

 Console.WriteLine("-MethodOne has started.");

 // Some big task

 Thread.Sleep(1000);

 Console.WriteLine("-MethodOne has finished.");

 }

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

537

 /*

 The following method's signature should match

 the delegate WaitCallback.It is as follows:

 public delegate void WaitCallback(object state)

 */

 private static void ExecuteMethodTwo(Object state)

 {

 Console.WriteLine("--MethodTwo has started.");

 // Some small task

 Thread.Sleep(100);

 Console.WriteLine("--MethodTwo has finished.");

 }

 }

}

 Output

The following is a possible output.

Asynchronous Programming Demonstration.

Using ThreadPool with Lambda Expression.

--MethodTwo has started.

-MethodOne has started.

--MethodThree has started.

---MethodThree prints 3.00

---MethodThree prints 3.01

---MethodThree prints 3.02

---MethodThree prints 3.03

---MethodThree prints 3.04

---MethodThree prints 3.05

---MethodThree prints 3.06

---MethodThree prints 3.07

---MethodThree prints 3.08

---MethodThree prints 3.09

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

538

--MethodTwo has finished.

--MethodThree has finished.

-MethodOne has finished.

End Main().

Note This time, you saw lambda expressions with the ThreadPool class. In
demonstration 2, you saw lambda expressions with the Thread class.

 Using IAsyncResult Pattern
I mentioned that the IAsyncResult interface helps you implement asynchronous

behavior. I also told you that in a synchronous model, if you have a synchronous method

called XXX, in the asynchronous version, you see the BeginXXX and EndXXX methods for

the corresponding synchronous method. Now you see these in detail.

 Polling Using Asynchronous Delegates
In demonstration 3 and demonstration 4, you saw a built-in WaitCallBack delegate. In

general, delegates have many different uses. In this section, you see another important

usage. Let’s consider polling, which is a mechanism that repeatedly checks a condition. In

our upcoming example, let’s check whether a delegate instance completes its task or not.

 Demonstration 5
This time, I modify the ExecuteMethodOne(...) and ExecuteMethodTwo() methods

slightly. These methods can print the thread IDs. Instead of blindly sleeping for 1000

milliseconds, this time, I allow ExecuteMethodOne(...) to accept an int parameter,

which supplies sleep times.

As in previous cases, ExecuteMethodTwo() sleeps only for 100 milliseconds,

but ExecuteMethodOne(...) takes more time to complete its task compared to

ExecuteMethodTwo(). To make it happen, in this example, I pass 3000 milliseconds

inside ExecuteMethodOne(...)as the method argument.

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

539

Let’s look at the important segment of the code. Now my ExecuteMethodOne is as

follows:

// First Method

private static void ExecuteMethodOne(int sleepTimeInMilliSec)

{

 Console.WriteLine("MethodOne has started.");

 Console.WriteLine($"Inside ExecuteMethodOne(),Thread id {Thread.

CurrentThread.ManagedThreadId}.");

 // Some big task

 Thread.Sleep(sleepTimeInMilliSec);

 Console.WriteLine("\nMethodOne has finished.");

}

To match the signature, I declare the delegate Method1Delegate as follows.

public delegate void Method1Delegate(int sleepTimeinMilliSec);

And later I instantiate it as follows.

Method1Delegate method1Del = ExecuteMethodOne;

Everything is straightforward so far. Now come to the most important line of the

code, which is as follows.

IAsyncResult asyncResult = method1Del.BeginInvoke(3000, null, null);

Do you remember that in the context of a delegate, you can use the Invoke()

method? But that time your code followed a synchronous path. Now you are exploring

asynchronous programming, and so you see the BeginInvoke and EndInvoke methods.

When the C# compiler sees the delegate keyword, it supplies these methods for a

dynamically generated class.

BeginInvoke method’s return type is IAsyncResult. If you hover your mouse on

BeginInvoke or notice its structure, you see that although ExecuteMethodOne accepts

only one parameter, the BeginInvoke method always takes two additional parameters:

one of type AsyncCallback and one of type object. You see the discussion on them

shortly. In this example, I used the first parameter only and passed 3000 milliseconds as

ExecuteMethodOne’s argument. But for the last two parameters of BeginInvoke, I passed

null values.

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

540

The returned result of BeginInvoke is important and I hold the result in an

IAsyncResult object. The IAsyncResult has the following the read-only properties.

public interface IAsyncResult

{

 bool IsCompleted { get; }

 WaitHandle AsyncWaitHandle { get; }

 object AsyncState { get; }

 bool CompletedSynchronously { get; }

}

For now, my focus is on the isCompleted property. If you expand these definitions

further, you see that isCompleted is defined as follows.

//

// Summary:

// Gets a value that indicates whether the asynchronous operation has

// completed.

//

// Returns:

// true if the operation is complete; otherwise, false.

bool IsCompleted { get; }

So, it’s clear that you can use this property to verify whether the delegate has completed

its work.

In the following example, I check whether the delegate in other thread completes its

work. If the work is not completed, I print asterisks (*) in the console window and forcing

the main thread to take a short sleep, which is why you see the following segment of code

in this demonstration.

while (!asyncResult.IsCompleted)

{

 // Keep working in main thread

 Console.Write("*");

 Thread.Sleep(5);

}

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

541

Lastly, the EndInvoke method accepts an argument of type IAsyncResult. So, I

passed asyncResult as an argument in this method. Now go through the complete

demonstration.

using System;

using System.Threading;

namespace PollingDemoInDotNetFramework

{

 //WILL NOT WORK ON .NET CORE.

 //RUN THIS PROGRAM ON .NET FRAMEWORK.

 class Program

 {

 public delegate void Method1Delegate(int sleepTimeinMilliSec);

 static void Main(string[] args)

 {

 Console.WriteLine("***Polling Demo.Run it in .NET

Framework.***");

 Console.WriteLine("Inside Main(),Thread id {0} .", Thread.

CurrentThread.ManagedThreadId);

 // Synchronous call

 //ExecuteMethodOne(3000);

 Method1Delegate method1Del = ExecuteMethodOne;

 IAsyncResult asyncResult = method1Del.BeginInvoke(3000, null,

null);

 ExecuteMethodTwo();

 while (!asyncResult.IsCompleted)

 {

 // Keep working in main thread

 Console.Write("*");

 Thread.Sleep(5);

 }

 method1Del.EndInvoke(asyncResult);

 Console.ReadKey();

 }

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

542

 // First Method

 private static void ExecuteMethodOne(int sleepTimeInMilliSec)

 {

 Console.WriteLine("MethodOne has started.");

 Console.WriteLine($"Inside ExecuteMethodOne(),Thread id

{Thread.CurrentThread.ManagedThreadId}.");

 // Some big task

 Thread.Sleep(sleepTimeInMilliSec);

 Console.WriteLine("\nMethodOne has finished.");

 }

 // Second Method

 private static void ExecuteMethodTwo()

 {

 Console.WriteLine("MethodTwo has started.");

 Console.WriteLine($"Inside ExecuteMethodTwo(),Thread id

{Thread.CurrentThread.ManagedThreadId}.");

 // Some small task

 Thread.Sleep(100);

 Console.WriteLine("MethodTwo has finished.");

 }

 }

}

 Output

The following is a possible output.

Polling Demo.Run it in .NET Framework.

Inside Main(),Thread id 1 .

MethodTwo has started.

Inside ExecuteMethodTwo(),Thread id 1.

MethodOne has started.

Inside ExecuteMethodOne(),Thread id 3.

MethodTwo has finished.

**

**

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

543

**

**

**

MethodOne has finished.

 Q&A Session
27.3 In a previous case, ExecuteMethodOne(...) takes only one parameter, and the

BeginInvoke takes three parameters. So, can I simply say that if ExecuteMethodOne(...)

accepts n number of parameters, then BeginInvoke has n+2 parameters?
Yes, the initial set of parameters is based on your methods, but for the last two

parameters, one is of type AsyncCallback, and the final one is of type object.

POINTS TO REMEMBER

• This type of example was run in .NET Framework 4.7.2. If you

execute the program in .NET Core 3.0, you get this exception: system.

PlatformNotsupportedException: 'operation is not supported on this platform.

one of the primary reasons for this is that async delegates implementations

depend on remoting features that are not present in .NET Core. The detailed

discussion on this can be found at https://github.com/dotnet/

runtime/issues/16312.

• If you do not want to examine and print the asterisks (*) in the console window,

you can simply call the EndInvoke() method of the delegate type once your

main thread completes its execution. The EndInvoke() itself waits until the

delegate completes its work.

• If you don’t explicitly examine whether the delegate finishes its execution or

not, or you simply forget to call EndInvoke(), the thread of the delegate

stops after the main thread dies. For instance, if you comment out the following

segment of code from the prior example.

//while (!asyncResult.IsCompleted)

//{

// Keep working in main thread

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

https://github.com/dotnet/runtime/issues/16312
https://github.com/dotnet/runtime/issues/16312

544

// Console.Write("*");

// Thread.Sleep(5);

//}

//method1Del.EndInvoke(asyncResult);

//Console.ReadKey();

And run the application again, you may NOT see the statement

"MethodOne has finished."

• BeginInvoke helps the calling thread get the result of the asynchronous

method invocation at a later time by using EndInvoke.

 Using AsyncWaitHandle of IAsyncResult
Did you notice WaitHandle AsyncWaitHandle { get; } inside IAsyncResult? It is

important, and this time, I show you an alternative approach using this property. If

you see it closely, you find that AsyncWaitHandle returns a WaitHandle, and it has the

following description.

//

// Summary:

// Gets a System.Threading.WaitHandle that is used to wait for an

// asynchronous operation to complete.

//

// Returns:

// A System.Threading.WaitHandle that is used to wait for an

// asynchronous operation to complete.

WaitHandle AsyncWaitHandle { get; }

The Visual Studio IDE confirms that WaitHandle is an abstract class that waits for

exclusive access to shared resources. Inside WaitHandle, you see WaitOne() method with

five different overloaded versions, which are as follows.

public virtual bool WaitOne(int millisecondsTimeout);

public virtual bool WaitOne(int millisecondsTimeout, bool exitContext);

public virtual bool WaitOne(TimeSpan timeout);

public virtual bool WaitOne(TimeSpan timeout, bool exitContext);

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

545

public virtual bool WaitOne();

In the upcoming demonstration, I used the first overloaded version and provided an

optional timeout value in milliseconds. If you expand the method, you see the following

summary associated with it.

// Summary:

// Blocks the current thread until the current System.Threading.WaitHandle

// receives a signal, using a 32-bit signed integer to specify the time

// interval in milliseconds.

//(Some other details omitted)

public virtual bool WaitOne(int millisecondsTimeout);

So, it’s clear that by using WaitHandle, you can wait for a delegate thread to finish its

work. In the following program, if the wait is successful, the control exits from the while

loop. But if a timeout occurs, WaitOne() returns false, and the while loop continues and

prints asterisks (*) in the console.

 Demonstration 6
using System;

using System.Threading;

//RUN THIS PROGRAM ON .NET FRAMEWORK.

namespace UsingWaitHandleInDotNetFramework

{

 class Program

 {

 public delegate void Method1Delegate(int sleepTimeinMilliSec);

 static void Main(string[] args)

 {

 Console.WriteLine("***Polling and WaitHandle Demo.***");

 Console.WriteLine("Inside Main(),Thread id {0} .", Thread.

CurrentThread.ManagedThreadId);

 // Synchronous call

 //ExecuteMethodOne(3000);

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

546

 // Asynchrous call using a delegate

 Method1Delegate method1Del = ExecuteMethodOne;

 IAsyncResult asyncResult = method1Del.BeginInvoke(3000, null,

null);

 ExecuteMethodTwo();

 while (true)

 {

 // Keep working in main thread

 Console.Write("*");

 /*

 There are 5 different overload method for WaitOne().

Following method blocks the current thread until the

 current System.Threading.WaitHandle receives a

signal,using a 32-bit signed integer to specify the time

interval in milliseconds.

 */

 if (asyncResult.AsyncWaitHandle.WaitOne(10))

 {

 Console.Write("\nResult is available now.");

 break;

 }

 }

 method1Del.EndInvoke(asyncResult);

 Console.WriteLine("\nExiting Main().");

 Console.ReadKey();

 }

 // First Method

 private static void ExecuteMethodOne(int sleepTimeInMilliSec)

 {

 Console.WriteLine("MethodOne has started.");

 // It will have a different thread id

 Console.WriteLine($"Inside ExecuteMethodOne(),Thread id

{Thread.CurrentThread.ManagedThreadId}.");

 // Some big task

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

547

 Thread.Sleep(sleepTimeInMilliSec);

 Console.WriteLine("\nMethodOne has finished.");

 }

 // Second Method

 private static void ExecuteMethodTwo()

 {

 Console.WriteLine("MethodTwo has started.");

 Console.WriteLine($"Inside ExecuteMethodTwo(),Thread id

{Thread.CurrentThread.ManagedThreadId}.");

 // Some small task

 Thread.Sleep(100);

 Console.WriteLine("MethodTwo has finished.");

 }

 }

}

 Output

Here is one possible output.

Polling and WaitHandle Demo.

Inside Main(),Thread id 1 .

MethodTwo has started.

Inside ExecuteMethodTwo(),Thread id 1.

MethodOne has started.

Inside ExecuteMethodOne(),Thread id 3.

MethodTwo has finished.

**

MethodOne has finished.

Result is available now.

Exiting Main().

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

548

 Analysis

If you compare this demonstration with the previous one, here you wait for the

asynchronous operation to complete differently. Instead of using IsCompleted property,

this time, you used the AsyncWaitHandle property of IAsyncResult. I showed you both

variations, which can be seen in different applications.

 Using Asynchronous Callback
Revisit the BeginInvoke method, which was used in the previous two demonstrations.

Let’s review how I used it.

// Asynchrous call using a delegate

Method1Delegate method1Del = ExecuteMethodOne;

IAsyncResult asyncResult = method1Del.BeginInvoke(3000, null, null);

This code segment shows that inside the BeginInvoke method, I passed two null

arguments for the last two method parameters. If you hover your mouse over the line of

these prior demonstrations, you notice that BeginInvoke is expecting an IAsyncCallback

delegate as the second parameter and an object for the third parameter in this case.

Let’s investigate the IAsyncCallback delegate. Visual Studio IDE tells that this

delegate is defined in System namespace, and it has the following description.

//

// Summary:

// References a method to be called when a corresponding asynchronous

// operation completes.

//

// Parameters:

// ar:

// The result of the asynchronous operation.

 [ComVisible(true)]

 public delegate void AsyncCallback(IAsyncResult ar);

You can use a callback method to execute something useful (for example, some

housekeeping works). The AsyncCallback delegate has a void return type, and it

accepts an IAsyncResult parameter. So, let's define a method that can match this

delegate signature and call this method once the Method1Del instance finishes its

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

549

execution. Here is a sample method (let’s call it ExecuteCallbackMethod) that is used in

an upcoming demonstration.

/*

It's a callback method.This method will be invoked

when Method1Delegate completes its work.

*/

private static void ExecuteCallbackMethod(IAsyncResult asyncResult)

{

 //if null you can throw some exception

 if (asyncResult != null)

 {

 Console.WriteLine("\nCallbackMethod has started.");

 Console.WriteLine($"Inside ExecuteCallbackMethod(...), Thread id

{Thread.CurrentThread.ManagedThreadId} .");

 // Do some housekeeping work/ clean-up operation

 Thread.Sleep(100);

 Console.WriteLine("CallbackMethod has finished.");

 }

 }

 Demonstration 7
Now go through the complete implementation.

using System;

using System.Threading;

namespace UsingAsynchronousCallback

{

 class Program

 {

 public delegate void Method1Delegate(int sleepTimeinMilliSec);

 static void Main(string[] args)

 {

 Console.WriteLine("***Using Asynchronous Callback.***");

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

550

 Console.WriteLine("Inside Main(),Thread id {0} .", Thread.

CurrentThread.ManagedThreadId);

 // Asynchrous call using a delegate

 Method1Delegate method1Del = ExecuteMethodOne;

 IAsyncResult asyncResult = method1Del.BeginInvoke(3000,

ExecuteCallbackMethod, null);

 ExecuteMethodTwo();

 while (!asyncResult.IsCompleted)

 {

 // Keep working in main thread

 Console.Write("*");

 Thread.Sleep(5);

 }

 method1Del.EndInvoke(asyncResult);

 Console.WriteLine("Exit Main().");

 Console.ReadKey();

 }

 // First Method

 private static void ExecuteMethodOne(int sleepTimeInMilliSec)

 {

 Console.WriteLine("MethodOne has started.");

 Console.WriteLine($"Inside ExecuteMethodOne(),Thread id

{Thread.CurrentThread.ManagedThreadId}.");

 // Some big task

 Thread.Sleep(sleepTimeInMilliSec);

 Console.WriteLine("\nMethodOne has finished.");

 }

 // Second Method

 private static void ExecuteMethodTwo()

 {

 Console.WriteLine("MethodTwo has started.");

 Console.WriteLine($"Inside ExecuteMethodTwo(),Thread id

{Thread.CurrentThread.ManagedThreadId}.");

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

551

 // Some small task

 Thread.Sleep(100);

 Console.WriteLine("MethodTwo has finished.");

 }

 /*

 It's a callback method.This method will be invoked

 when Method1Delegate instance completes its work.

 */

 private static void ExecuteCallbackMethod(IAsyncResult asyncResult)

 {

 if (asyncResult != null)//if null you can throw some exception

 {

 Console.WriteLine("\nCallbackMethod has started.");

 Console.WriteLine($"Inside ExecuteCallbackMethod(...),

Thread id {Thread.CurrentThread.ManagedThreadId} .");

 // Do some housekeeping work/ clean-up operation

 Thread.Sleep(100);

 Console.WriteLine("CallbackMethod has finished.");

 }

 }

 }

}

 Output

The following is a possible output.

Using Asynchronous Callback.

Inside Main(),Thread id 1 .

MethodTwo has started.

Inside ExecuteMethodTwo(),Thread id 1.

MethodOne has started.

Inside ExecuteMethodOne(),Thread id 3.

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

552

MethodTwo has finished.

**

MethodOne has finished.

CallbackMethod has started.

Inside ExecuteCallbackMethod(...),Thread id 3 .

Exit Main().

CallbackMethod has finished.

 Analysis

The callback method started its work only after ExecuteMethodOne finished its execution.

Also, note that the ExecuteMethodOne and ExecuteCallbackMethod thread IDs are

the same. It is because the callback method was invoked from the thread in which

ExecuteMethodOne was running.

 Q&A Session
27.4 What is a callback method?
Normally, it is a method that is invoked after a specific operation is completed. You

often see this kind of method in asynchronous programming when you do not know the

exact finishing time of an operation, but you want to start a new task once a certain task

is done. For example, in the previous example, ExecuteCallbackMethod can perform

some clean-up work if ExecuteMethodOne allocates some resources during its execution.

27.5 I see that the callback method was not invoked from the main thread. Is it
expected?

Yes. In this example, ExecuteCallbackMethod is the callback method that can start

its execution only after ExecuteMethodOne completes its work. So, it makes sense that

you call ExecuteCallbackMethod from the same thread in which ExecuteMethodOne was

running.

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

553

27.6 Can I use a lambda expression in this example?
Good catch. To get a similar output, in the previous demonstration, instead of

creating a new ExecuteCallbackMethod method and using the following line,

IAsyncResult asyncResult = method1Del.BeginInvoke(3000,

ExecuteCallbackMethod, null);

you could replace it using a lambda expression as follows.

IAsyncResult asyncResult = method1Del.BeginInvoke(3000,

 (result) =>

{

 if (result != null)//if null you can throw some exception

 {

 Console.WriteLine("\nCallbackMethod has started.");

 Console.WriteLine($"Inside ExecuteCallbackMethod(),Thread id {

Thread.CurrentThread.ManagedThreadId }.");

 // Do some housekeeping work/ clean-up operation

 Thread.Sleep(100);

 Console.WriteLine("CallbackMethod has finished.");

 }

 },

null);

27.7 I see that when you used the callback method inside the BeginInvoke

method, instead of passing an object as the final parameter, you passed a null value.
Is there any specific reason for this?

No, I did not use that parameter in these demonstrations. Since it is an object

parameter, you can pass anything meaningful to you. When you use a callback method,

you can pass the delegate instance itself. It can help your callback method to analyze the

result of the asynchronous method.

But for simplicity, let’s modify the previous demonstration and pass a string message

as the last argument inside BeginInvoke. Let’s assume now you are modifying the

existing line of code

IAsyncResult asyncResult = method1Del.BeginInvoke(3000,ExecuteCallback

Method, null);

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

554

with the following one.

IAsyncResult asyncResult = method1Del.BeginInvoke(3000,

ExecuteCallbackMethod, "Method1Delegate, Thank you for using me.");

To accommodate this change, lets modify the ExecuteCallbackMethod() method too.

The newly added lines are shown in bold.

private static void ExecuteCallbackMethod(IAsyncResult asyncResult)

{

 if (asyncResult != null)//if null you can throw some exception

 {

 Console.WriteLine("\nCallbackMethod has started.");

 Console.WriteLine($"Inside ExecuteCallbackMethod(...),Thread id {

Thread.CurrentThread.ManagedThreadId} .");

 // Do some housekeeping work/ clean-up operation

 Thread.Sleep(100);

 // For Q&A 27.7

 string msg = (string)asyncResult.AsyncState;

 Console.WriteLine($"Callback method says : ‘{msg}’");

 Console.WriteLine("CallbackMethod has finished.");

 }

 }

If you run the program again, this time you can see the following output which

conforms the new string message:

Using Asynchronous Callback.

Inside Main(),Thread id 1 .

MethodTwo has started.

Inside ExecuteMethodTwo(),Thread id 1.

MethodOne has started.

Inside ExecuteMethodOne(),Thread id 3.

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

555

MethodTwo has finished.

**

**

MethodOne has finished.

CallbackMethod has started.

Exit Main().

Inside ExecuteCallbackMethod(...),Thread id 3 .

Callback method says : `Method1Delegate, Thank you for using me.'

CallbackMethod has finished.

POINTS TO REMEMBER

you have seen the implementation of polling, wait handles, and asynchronous callbacks using

delegates. This programming model can be seen in other places in .NET Framework also, for

example BeginGetResponse, BeginGetRequestStream of HttpWebRequest class or

BeginExecuteNonQuery(), BeginExecuteReader(), BeginExecuteXmlReader() of

SqlCommand class. These methods have overloaded versions too.

 Using Event-based Asynchronous Pattern
In this section, you see the usage of event-based asynchronous patterns, which are

initially tough to understand. Based on the complexity of your application, this pattern

can take various forms. Here are some key characteristics of this pattern.

• In general, an asynchronous method can be a replica of its

synchronous version, but when you call it, it starts on a separate

thread and then return immediately. This mechanism allows you to

call a thread to continue while the intended operations run in the

background. Examples of these operations can be a long-running

process such as loading a large image, downloading a large file,

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

556

connecting, establishing a connection to a database, and so forth.

Event-based asynchronous patterns are helpful in these contexts. For

example, once the long-running download operation is completed,

an event can be raised to notify the information. The subscribers of

the event can act based on this notification immediately.

• You can execute multiple methods simultaneously and receive a

notification when each one completes.

• Using this pattern, you take advantage of multithreading, but at the

same time, you hide the overall complexity.

• In the simplest case, your method name has an Async suffix to tell

others that you are using an asynchronous version of the method.

At the same time, you have a corresponding event with a Completed

suffix. In an ideal case, you should have a corresponding cancel

method, and it should support displaying the progress bar/report.

The method that supports the cancel operation can also be named

MethodNameAsyncCancel (or simply CancelAsync).

• Components like SoundPlayer, PictureBox, WebClient, and

BackgroundWorker are commonly known representatives of this

pattern.

I made a simple application using WebClient. Let’s look at it.

 Demonstration 8
At the beginning of the program, you see that I needed to include some specific

namespaces. I used the comments to tell you about their importance in this

demonstration.

In this example, I want to download a file into my local system. But instead of using

a true URL from the Internet, I stored the source file in my local system. This gives two

major benefits.

• You do not need an Internet connection to run this application.

• Since you’re not using the Internet connection, the download

operation is relatively faster.

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

557

Now look at the following block of code before you see the complete example.

WebClient webClient = new WebClient();

// File location

Uri myLocation = new Uri(@"C:\TestData\testfile_original.txt");

// Target location for download

string targetLocation = @"C:\TestData\downloaded_file.txt";

webClient.DownloadFileAsync(myLocation, targetLocation);

webClient.DownloadFileCompleted += new AsyncCompletedEventHandler(Download

Completed);

So far, things are straightforward and simple. But I draw your attention to the

following lines of code.

webClient.DownloadFileAsync(myLocation, targetLocation);

webClient.DownloadFileCompleted += new AsyncCompletedEventHandler(Download

Completed);

You can see that in the first line, I use a method defined in WebClient called

DownloadFileAsync. In Visual Studio, the method description tells us the following.

// Summary:

// Downloads, to a local file, the resource with the specified

URI. This method does not block the calling thread.

//

// Parameters:

// address:

// The URI of the resource to download.

//

// fileName:

// The name of the file to be placed on the local computer.

//

// Exceptions:

// T:System.ArgumentNullException:

// The address parameter is null. -or- The fileName parameter is null.

//

// T:System.Net.WebException:

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

558

// The URI formed by combining System.Net.WebClient.BaseAddress and

address is invalid.

// -or- An error occurred while downloading the resource.

//

// T:System.InvalidOperationException:

// The local file specified by fileName is in use by another thread.

public void DownloadFileAsync(Uri address, string fileName);

When you use this method, the calling thread is not blocked. (Actually,

DownloadFileAsync is the asynchronous version of the DownloadFile method, which is

also defined in WebClient.)

Now we come to the next line of code.

webClient.DownloadFileCompleted += new

 AsyncCompletedEventHandler(DownloadCompleted);

Visual Studio describes DownloadFileCompleted event as follows.

/ Summary:

// Occurs when an asynchronous file download operation completes.

public event AsyncCompletedEventHandler DownloadFileCompleted;

It further describes AsyncCompletedEventHandler as follows.

// Summary:

// Represents the method that will handle the MethodNameCompleted event

// of an asynchronous operation.

//

// Parameters:

// sender:

// The source of the event.

//

// e:

// An System.ComponentModel.AsyncCompletedEventArgs that contains the

// event data.

public delegate void AsyncCompletedEventHandler(object sender,

AsyncCompletedEventArgs e);

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

559

You can subscribe to the DownloadFileCompleted event to show a notification that

the download operation is finished. To do that, I used the following method.

private static void DownloadCompleted(object sender,

AsyncCompletedEventArgs e)

{

 Console.WriteLine("Successfully downloaded the file now.");

}

Note The DownloadCompleted method matches the signature of
AsyncCompletedEventHandler delegate.

I assume that you have mastered the concept of delegates and events before you run

this application. So, you know that I could replace the line of code.

webClient.DownloadFileCompleted += new AsyncCompletedEventHandler(Download

Completed);

with the following line of code.

webClient.DownloadFileCompleted += DownloadCompleted;

But I like to keep the long version for better readability. Now go through the

complete example and output.

using System;

// For AsyncCompletedEventHandler delegate

using System.ComponentModel;

using System.Net; // For WebClient

using System.Threading; // For Thread.Sleep() method

namespace UsingWebClient

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Event Based Asynchronous Program

Demo.***");

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

560

 // Method1();

 #region The lenghty operation(download)

 Console.WriteLine("Starting a download operation.");

 WebClient webClient = new WebClient();

 // File location

 Uri myLocation = new Uri(@"C:\TestData\OriginalFile.txt");

 // Target location for download

 string targetLocation = @"C:\TestData\DownloadedFile.txt";

 webClient.DownloadFileAsync(myLocation, targetLocation);

 webClient.DownloadFileCompleted += new AsyncCompletedEvent

Handler(DownloadCompleted);

 #endregion

 ExecuteMethodTwo();

 Console.WriteLine("End Main()...");

 Console.ReadKey();

 }

 // ExecuteMethodTwo

 private static void ExecuteMethodTwo()

 {

 Console.WriteLine("MethodTwo has started.");

 // Some very small task

 Thread.Sleep(10);

 Console.WriteLine("MethodTwo has finished.");

 }

 private static void DownloadCompleted(object sender,

AsyncCompletedEventArgs e)

 {

 Console.WriteLine("Successfully downloaded the file now.");

 }

 }

}

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

561

 Output

The following is a possible output.

Event Based Asynchronous Program Demo.

Starting a download operation.

MethodTwo has started.

MethodTwo has finished.

End Main()...

Successfully downloaded the file now.

 Analysis

You can see that the download operation started before ExecuteMethodTwo() starts its

execution. Still, ExecuteMethodTwo() completed its job before the download operation

completed. If you are interested in the content of Original.txt, here it is.

Dear Reader,

This is my test file.It is originally stored at C:\TestData in my system.

You can test with a similar file and contents for a quick verification at your end.

 Additional Note

You can make this example even better when you introduce a progress bar. In that case,

you can use a Windows Form App to get built-in support for the progress bar. Let’s ignore

ExecuteMethodTwo() for now, and focus on the asynchronous download operation

solely. You can make a basic form, as shown in Figure 27-2, which contains three simple

buttons and one progress bar. (You need to drag and drop these controls on your form

first and name them as shown in Figure 27-2. I assume that you know these simple

activities.)

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

562

The following segment of code is self-explanatory.

using System;

using System.ComponentModel;

using System.Net;

using System.Windows.Forms;

namespace UsingWebClentWithWinForm

{

 public partial class Form1 : Form

 {

 public Form1()

 {

 InitializeComponent();

 }

 private void StartDownload_Click(object sender, EventArgs e)

 {

 WebClient webClient = new WebClient();

Figure 27-2. A simple UI application to demonstrate event-based asynchrony

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

563

 Uri myLocation = new Uri(@"C:\TestData\testfile_original.txt");

 string targetLocation = @"C:\TestData\downloaded_file.txt";

 webClient.DownloadFileAsync(myLocation, targetLocation);

 webClient.DownloadFileCompleted += new AsyncCompletedEvent

Handler(DownloadCompleted);

 webClient.DownloadProgressChanged += new DownloadProgressChanged

EventHandler(ProgressChanged);

 MessageBox.Show("Executed download operation.");

 }

 private void DownloadCompleted(object sender, AsyncCompletedEventArgs e)

 {

 MessageBox.Show("Successfully downloaded the file now.");

 }

 private void ProgressChanged(object sender,

DownloadProgressChangedEventArgs e)

 {

 progressBar.Value = e.ProgressPercentage;

 }

 private void ResetButton_Click(object sender, EventArgs e)

 {

 progressBar.Value = 0;

 }

 private void ExitButton_Click(object sender, EventArgs e)

 {

 this.Close();

 }

 }

}

Note you can download the complete code for this application from the Apress
website.

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

564

 Output

Once you click StartDownloadButton, you get the output shown in Figure 27-3 and

Figure 27-4.

Once you click the OK button, you see the message box shown in Figure 27-4.

Figure 27-3. A runtime screenshot of the UI application

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

565

 Q&A Session
27.8 What are the pros and cons associated with an event-based asynchronous

program?
Here are some common pros and cons associated with this approach.

Pros

• You can invoke a long-running method and return immediately.

When the method completes, you can get a notification that you can

use effectively.

Cons

• Since you have segregated code, it’s often difficult to understand,

debug, and maintain.

• A major problem occurs when you subscribe to an event but later

forget to unsubscribe. This mistake can lead to memory leaks in your

application, and the impact can be severe; for example, your system

hangs or is unresponsive, and you need to reboot it often.

 Understanding Tasks
To understand the task-based asynchronous pattern (TAP), first, you must know what

a task is. A task is simply a unit of work that you want to perform. You can complete this

work in the same thread or a different thread. Using tasks, you can have better control over

Figure 27-4. Another message box pops up when you click the OK button

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

566

the threads; for example, you can perform a continuation work once a particular task is

finished. A parent task can create child tasks, so you can organize the hierarchy. This kind

of hierarchy is important when you cascade your messages. Consider an example. In your

application, once a parent task is canceled, the child tasks should be canceled too.

You can create tasks in different ways. In the following demonstration, I created three

tasks in three different ways. The following segment of code has supporting comments.

#region Different ways to create and execute task

// Using constructor

Task taskOne = new Task(MyMethod);

taskOne.Start();

// Using task factory

TaskFactory taskFactory = new TaskFactory();

// StartNew Method creates and starts a task.

// It has different overloaded version.

Task taskTwo = taskFactory.StartNew(MyMethod);

// Using task factory via a task

Task taskThree = Task.Factory.StartNew(MyMethod);

#endregion

You can see that all three tasks (taskOne, taskTwo, taskThree) try to do a similar

operation: they simply execute MyMethod(), which is described as follows.

private static void MyMethod()

{

 Console.WriteLine("Task.id={0} with Thread id {1} has started.", Task.

CurrentId, Thread.CurrentThread.ManagedThreadId);

 // Some task

 Thread.Sleep(100);

 Console.WriteLine("MyMethod for Task.id={0} and Thread id {1} is

completed.", Task.CurrentId, Thread.CurrentThread.ManagedThreadId);

 }

You can see that inside MyMethod(), to distinguish the tasks and threads, I printed

their corresponding IDs in the console. Apart from this, I passed the method name as

an argument inside the StartNew() method. This method has 16 overloaded versions

(at the time of this writing), and I used the one that is defined as follows.

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

567

//

// Summary:

// Creates and starts a task.

//

// Parameters:

// action:

// The action delegate to execute asynchronously.

//

// Returns:

// The started task.

//

// Exceptions:

// T:System.ArgumentNullException:

// The action argument is null.

public Task StartNew(Action action);

Since MyMethod() matches the signature of the Action delegate in this case, there

was no problem for me to use this method with StartNew.

POINTS TO REMEMBER

For your reference, let’s recollect the theory behind the Action delegate. The method summary

of the following code:

 public delegate void Action();

says that it encapsulates a method that has no parameters and does not return a value.

In the upcoming example (demonstration 9), you see that MyMethod() doesn’t accept

any argument, and its return type is void; this is why I could use the method name inside

StartNew().

But it is important to note that in advanced programming, you frequently see the generic

versions of Action delegates. I selected the following lines from my book Getting Started with
Advanced C# (Apress, 2020):

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

568

Action delegates can take 1 to 16 input parameters but do not have a return type. The

overloaded versions are as follows:

Action<in T>

Action<in T1,in T2>

Action<in T1,in T2, in T3>

....

Action<in T1, in T2, in T3,in T4, in T5, in T6,in T7,in T8,in T9,in T10,in

T11,in T12,in T13,in T14,in T15,in T16>

For example, if you have a method called CalculateSumOfThreeInts that takes three int’s

as input parameters and whose return type is void, as follows:

private static void CalculateSumOfThreeInts(int i1, int i2, int i3)

{

 int sum = i1 + i2 + i3;

 Console.WriteLine("Sum of {0},{1} and {2} is: {3}", i1, i2, i3, sum);

}

you can use an Action delegate to get the sum of three integers, as follows:

Action<int, int, int> sum = new Action<int, int, int>(

CalculateSumOfThreeInts);

sum(10, 3, 7);

otherwise, you can use the short form as follows:

Action<int, int, int> sum = CalculateSumOfThreeInts;

sum(10, 3, 7);

 Demonstration 9
Now go through the complete demonstration and output.

using System;

using System.Threading;

using System.Threading.Tasks;

namespace DifferentWaysToCreateTask

{

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

569

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Using different ways to create

tasks.****");

 Console.WriteLine($"Inside Main().Thread ID:{Thread.

CurrentThread.ManagedThreadId}");

 #region Different ways to create and execute task

 // Using constructor.

 Task taskOne = new Task(MyMethod);

 taskOne.Start();

 // Using task factory.

 TaskFactory taskFactory = new TaskFactory();

 // StartNew Method creates and starts a task.

 // It has different overloaded versions.

 Task taskTwo = taskFactory.StartNew(MyMethod);

 // Using task factory via a task.

 Task taskThree = Task.Factory.StartNew(MyMethod);

 #endregion

 Console.ReadKey();

 }

 private static void MyMethod()

 {

 Console.WriteLine($"Task.id={Task.CurrentId} with Thread id

{Thread.CurrentThread.ManagedThreadId} has started.");

 Thread.Sleep(100);

 Console.WriteLine($"MyMethod for Task.id={Task.CurrentId}

and Thread id {Thread.CurrentThread.ManagedThreadId} is

completed.");

 }

 }

}

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

570

 Output

The following is a possible output.

Using different ways to create tasks.*

Inside Main().Thread ID:1

Task.id=3 with Thread id 6 has started.

Task.id=2 with Thread id 4 has started.

Task.id=1 with Thread id 5 has started.

MyMethod for Task.id=3 and Thread id 6 is completed.

MyMethod for Task.id=1 and Thread id 5 is completed.

MyMethod for Task.id=2 and Thread id 4 is completed.

Note ManagedThreadId gets a unique identifier only for a particular managed
thread. you may notice a different value when you run the application on your
machine. so, you should not feel that since you have created n number of threads,
you should see the thread ids between 1 to n only. There may be other threads
running in the background.

 Q&A Session

27.9 StartNew() can be used for the methods that match the Action delegate
signature. Is this correct?

Not at all. I used it in one of the StartNew overloads that accepts a parameter, which

is the name of a method that matches an Action delegate signature. But, there are other

overloaded versions of StartNew; for example, consider the following, in which you see

the Func delegates.

public Task<TResult> StartNew<[NullableAttribute(2)]TResult>

(Func<TResult> function, TaskCreationOptions creationOptions);

Or,

public Task<TResult> StartNew<[NullableAttribute(2)]TResult>

(Func<TResult> function, CancellationToken cancellationToken);

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

571

27.10 In a previous Q&A, I saw TaskCreationOptions. What does it mean?
It is an enum. You can set a task’s behavior using it. Here is the details of it.

public enum TaskCreationOptions

{

 None = 0,

 PreferFairness = 1,

 LongRunning = 2,

 AttachedToParent = 4,

 DenyChildAttach = 8,

 HideScheduler = 16,

 RunContinuationsAsynchronously = 64,

}

In an upcoming demonstration, you see another important enum called

TaskContinuationOptions, which can also help you set a task behavior.

 Using Task-based Asynchronous Pattern (TAP)
Task-based Asynchronous Pattern (TAP) came in C# 4.0. It is the foundation for

async/await, which came in C# 5.0. TAP introduced the Task class and its generic

variant Task<TResult>. Task is used when the return value of an asynchronous chunk

of code is not a big concern. But when you do care about this return value, you should

use the generic version, Task<TResult>. You have had an overview of Task. Let’s use this

concept to implement a task-based asynchronous pattern using ExecuteMethodOne()

and ExecuteMethodTwo().

 Demonstration 10
Here is a complete demonstration.

using System;

using System.Threading;

using System.Threading.Tasks;

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

572

namespace UsingTAP

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Using Task-based Asynchronous

Pattern.****");

 Console.WriteLine($"Inside Main().The thread ID:{Thread.

CurrentThread.ManagedThreadId}");

 Task taskForMethod1 = new Task(ExecuteMethodOne);

 taskForMethod1.Start();

 ExecuteMethodTwo();

 Console.ReadKey();

 }

 private static void ExecuteMethodOne()

 {

 Console.WriteLine("Method1 has started.");

 Console.WriteLine($"Inside ExecuteMethodOne(),Thread id

{Thread.CurrentThread.ManagedThreadId}.");

 // Some big task

 Thread.Sleep(1000);

 Console.WriteLine("Method1 has completed its job now.");

 }

 private static void ExecuteMethodTwo()

 {

 Console.WriteLine("Method2 has started.");

 Console.WriteLine($"Inside ExecuteMethodTwo(),Thread id

{Thread.CurrentThread.ManagedThreadId}.");

 Thread.Sleep(100);

 Console.WriteLine("Method2 is completed.");

 }

 }

}

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

573

 Output

The following is a possible output.

Using Task-based Asynchronous Pattern.*

Inside Main().The thread ID:1

Method2 has started.

Inside ExecuteMethodTwo(),Thread id 1.

Method1 has started.

Inside ExecuteMethodOne(),Thread id 4.

Method2 is completed.

Method1 has completed its job now.

You have just seen a sample demo of a task-based asynchronous pattern. I did not

care about the return value of ExecuteMethodOne(). But let’s say that you are interested

in whether ExecuteMethodOne() executed successfully or not. For simplicity, I use a

string message to indicate successful completion in the upcoming example. And this

time, you see a generic variant of Task, which is Task<string> in this example. For

lambda expression lovers, I modified ExecuteMethodOne() with a lambda expression in

this example, and to fulfill the key requirement, I adjusted the return type.

In this example, I added another method called, ExecuteMethodThree(). For

comparison, this method is initially commented out; the program is executed, and

the output is analyzed. Later, I uncomment it and create a task hierarchy using

the method. Once this is done, the program is executed again, and you notice that

ExecuteMethodThree() runs when ExecuteMethodOne() completes its job. I kept the

comments to help you understand.

Now go through demonstration 11.

 Demonstration 11
Here is a complete demonstration.

using System;

using System.Threading;

using System.Threading.Tasks;

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

574

namespace TAPDemonstration2

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Using Task-based Asynchronous Pattern.

Using lambda expression into it.****");

 Console.WriteLine("Inside Main().Thread ID:{0}", Thread.

CurrentThread.ManagedThreadId);

 // Task taskForMethod1 = new Task(Method1);

 // taskForMethod1.Start();

 Task<string> taskForMethod1 = ExecuteMethodOne();

 /*

 Wait for task to complete.

 If you use Wait() method as follows, you'll not see

the asynchonous behavior.

 */

 // taskForMethod1.Wait();

 // Continue the task

 // The taskForMethod3 will continue once taskForMethod1 is

// finished

 // Task taskForMethod3 = taskForMethod1.ContinueWith(Execute

MethodThree, TaskContinuationOptions.OnlyOnRanToCompletion);

 ExecuteMethodTwo();

 Console.WriteLine($"Task for Method1 was a : {taskForMethod1.

Result}");

 Console.ReadKey();

 }

 // Using lambda expression

 private static Task<string> ExecuteMethodOne()

 {

 return Task.Run(() =>

 {

 string result = "Failure";

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

575

 try

 {

 Console.WriteLine("Method1 has started.");

 Console.WriteLine($"Inside Method1(),Task.id={Task.

CurrentId}");

 Console.WriteLine($"Inside Method1(),Thread id {Thread.

CurrentThread.ManagedThreadId}.");

 //Some big task

 Thread.Sleep(1000);

 Console.WriteLine("Method1 has completed its job

now.");

 result = "Success";

 }

 catch (Exception ex)

 {

 Console.WriteLine("Exception caught:{0}", ex.Message);

 }

 return result;

 }

);

 }

 private static void ExecuteMethodTwo()

 {

 Console.WriteLine("Method2 has started.");

 Console.WriteLine($"Inside ExecuteMethodTwo(),Thread id

{Thread.CurrentThread.ManagedThreadId}.");

 Thread.Sleep(100);

 Console.WriteLine("Method2 is completed.");

 }

 private static void ExecuteMethodThree(Task task)

 {

 Console.WriteLine("Method3 starts now.");

 Console.WriteLine($"Task.id is:{Task.CurrentId} with Thread id

is:{Thread.CurrentThread.ManagedThreadId}");

 Thread.Sleep(20);

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

576

 Console.WriteLine($"Method3 with Task.id {Task.CurrentId}

and Thread id {Thread.CurrentThread.ManagedThreadId} is

completed.");

 }

 }

}

 Output

The following is a possible output.

***Using Task-based Asynchronous Pattern.Using lambda expression into

it.****

Inside Main().Thread ID:1

Method2 has started.

Inside ExecuteMethodTwo(),Thread id 1.

Method1 has started.

Inside Method1(),Task.id=1

Inside Method1(),Thread id 4.

Method2 is completed.

Method1 has completed its job now.

Task for Method1 was a : Success

 Analysis

Did you notice that this time, I did not use the Start() method for taskForMethod1?

Instead, I used the Run() method from the Task class to execute Method1(). Why did

I do that? Well, inside the Task class, Run is a static method. The method summary in

Visual Studio states the following about this Run method: "Queues the specified

work to run on the thread pool and returns a System.Threading.Tasks.Task`1

object that represents that work." At the time of writing, this method had eight

overloaded versions, which are as follows.

public static Task Run(Action action);

public static Task Run(Action action, CancellationToken cancellationToken);

public static Task<TResult> Run<TResult>(Func<TResult> function);

public static Task<TResult> Run<TResult>(Func<TResult> function,

CancellationToken cancellationToken);

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

577

public static Task Run(Func<Task> function);

public static Task Run(Func<Task> function, CancellationToken

cancellationToken);

public static Task<TResult> Run<TResult>(Func<Task<TResult>> function);

public static Task<TResult> Run<TResult>(Func<Task<TResult>> function,

CancellationToken cancellationToken);

Now check another important point in this example. If you uncomment the

following line,

// Task taskForMethod3 = taskForMethod1.ContinueWith(ExecuteMethodThree,

TaskContinuationOptions.OnlyOnRanToCompletion);

and run the application again, you get output similar to the following.

***Using Task-based Asynchronous Pattern.Using lambda expression into

it.****

Inside Main().Thread ID:1

Method2 has started.

Inside ExecuteMethodTwo(),Thread id 1.

Method1 has started.

Inside Method1(),Task.id=1

Inside Method1(),Thread id 4.

Method2 is completed.

Method1 has completed its job now.

Task for Method1 was a : Success

Method3 starts now.

Task.id is:2 with Thread id is:5

Method3 with Task.id 2 and Thread id 5 is completed.

You can see the ContinueWith() method helps continue a task. You may also notice

the following.

TaskContinuationOptions.OnlyOnRanToCompletion

It simply states that the task will continue when taskForMethod1 completes its job.

Similarly, you can opt for other options using the enum TaskContinuationOptions, which

has the following description.

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

578

public enum TaskContinuationOptions

{

 None = 0,

 PreferFairness = 1,

 LongRunning = 2,

 AttachedToParent = 4,

 DenyChildAttach = 8,

 HideScheduler = 16,

 LazyCancellation = 32,

 RunContinuationsAsynchronously = 64,

 NotOnRanToCompletion = 65536,

 NotOnFaulted = 131072,

 OnlyOnCanceled = 196608,

 NotOnCanceled = 262144,

 OnlyOnFaulted = 327680,

 OnlyOnRanToCompletion = 393216,

 ExecuteSynchronously = 524288

}

 Q&A Session
27.11 Can I assign multiple tasks at a time?
Yes, you can. For example, in the previously modified example, if you have another

method called ExecuteMethodFour with the following description.

private static void ExecuteMethodFour(Task task)

{

 Console.WriteLine("Method4 starts now.");

 Console.WriteLine($"Task.id is:{ Task.CurrentId } with Thread id is :{

Thread.CurrentThread.ManagedThreadId } ");

 Thread.Sleep(10);

 Console.WriteLine($"Method4 with Task.id { Task.CurrentId } and Thread

id { Thread.CurrentThread.ManagedThreadId } is completed."); ,

}

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

579

You can write the following lines.

Task<string> taskForMethod1 = Method1();

Task taskForMethod3 = taskForMethod1.ContinueWith(ExecuteMethodThree,

TaskContinuationOptions.OnlyOnRanToCompletion);

 taskForMethod3 = taskForMethod1.ContinueWith(ExecuteMethodFour,

TaskContinuationOptions.OnlyOnRanToCompletion);

This means that once taskForMethod1 completes the task, you see the continuation

work with taskForMethod3, which executes both ExecuteMethodThree and

ExecuteMethodFour.

It is also important to note that a continuation work can have another continuation

work. For example, if you want something like the following.

• Once taskForMethod1 finishes, then to continue with

taskForMethod3; and

• Once taskForMethod3 finishes, then only to continue with

taskForMethod4

you can write something similar to the following.

// Method1 starts

Task<string> taskForMethod1 = Method1();

// Task taskForMethod3 starts after taskForMethod1

Task taskForMethod3 = taskForMethod1.ContinueWith(ExecuteMethodThree,

TaskContinuationOptions.OnlyOnRanToCompletion);

// Task taskForMethod4 starts after taskForMethod3

Task taskForMethod4 = taskForMethod3.ContinueWith(ExecuteMethodFour,

TaskContinuationOptions.OnlyOnRanToCompletion);

 Using the async and await Keywords
The async and await keywords make the TAP pattern very flexible. Since the beginning

of this chapter, I used two methods. The first method is a long-running method that

takes more time to complete than the second method. In the upcoming examples, I

continue the case studies with similar methods. For simplicity, let’s call them Method1()

and Method2(), respectively.

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

580

Initially, I used a nonlambda version, but in the analysis section, I used the lambda

expression variant of the code. First, let’s look at Method1() again.

private static void Method1()

{

 Console.WriteLine("Method1 has started.");

 Console.WriteLine("Inside Method1(),Thread id {0} .", Thread.

CurrentThread.ManagedThreadId);

 // Some big task

 Thread.Sleep(1000);

 Console.WriteLine("Method1 has completed its job now.");

}

When you use lambda expression and use the async/await pair, your code may look

like the following.

// Using lambda expression

private static async Task Method1()

{

 await Task.Run(() =>

 {

 Console.WriteLine("Method1 has started.");

 Console.WriteLine("Inside Method1(),Thread id {0} .", Thread.

CurrentThread.ManagedThreadId);

 // Some big task

 Thread.Sleep(1000);

 Console.WriteLine("Method1 has completed its job now.");

 }

);

}

Have you noticed an interesting fact? The method bodies of the synchronous version

and the asynchronous version are very similar. But many of the earlier solutions to

implement asynchronous programming were not like this. (They were complex too.)

So, what does await do? When you analyze the code, you find that once you get an

await, the calling thread jumps out of the method and continue with something else.

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

581

In the upcoming demonstration, I used Task.Run, and it caused the asynchronous

call to continue on a separate thread. It does not mean that the continuation work should

always be done on a new thread, because sometimes you aren’t worried about different

threads; for example, when your call is waiting to establish a connection over a network to

download something.

Lastly, in the nonlambda version (demonstration 12), I used the following block of

code.

private static async Task ExecuteTaskOne()

{

 await Task.Run(Method1);

}

And inside Main(), instead of calling Method1(), I used ExecuteTaskOne() to execute

Method1() asynchronously. You can see that I passed the method name, Method1, inside

the Run method. You can recognize that I used the shortest overloaded version of the Run

method here. Since Method1 matches the signature of an Action delegate, you can pass

this method name as an argument in the Run method of the Task class.

 Demonstration 12
Here is the complete demonstration.

using System;

using System.Threading;

using System.Threading.Tasks;

namespace UsingAsyncAwait

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Exploring task-based asynchronous

pattern(TAP) using async and await.****");

 Console.WriteLine("Inside Main().Thread ID:{0}", Thread.

CurrentThread.ManagedThreadId);

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

582

 /*

 This call is not awaited.So,the current method

 continues before the call is completed.

 i.e., following async call is not awaited.

 */

 ExecuteTaskOne();

 Method2();

 Console.ReadKey();

 }

 private static async Task ExecuteTaskOne()

 {

 await Task.Run(Method1);

 }

 private static void Method1()

 {

 Console.WriteLine("Method1() has started.");

 Console.WriteLine("Inside Method1(),Thread id {0} .", Thread.

CurrentThread.ManagedThreadId);

 // Some big task

 Thread.Sleep(1000);

 Console.WriteLine("Method1() has completed its job now.");

 }

 private static void Method2()

 {

 Console.WriteLine("Method2() has started.");

 Console.WriteLine("Inside Method2(),Thread id {0} .", Thread.

CurrentThread.ManagedThreadId);

 //Some small task

 Thread.Sleep(100);

 Console.WriteLine("Method2() is completed.");

 }

 }

}

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

583

Note I recommend that you execute the task-based asynchronous programs in
the latest editions of Visual studio 2019 to avoid some misbehaviors, which were
seen in older versions of Visual studio.

 Output

The following is a possible output.

***Exploring task-based asynchronous pattern(TAP) using async and

await.****

Inside Main().Thread ID:1

Method1() has started.

Inside Method1(),Thread id 4 .

Method2() has started.

Inside Method2(),Thread id 1 .

Method2() is completed.

Method1() has completed its job now.

 Analysis

In the previous output, you can see that Method1() was invoked earlier, but Method2()’s

execution was not blocked due to that. Please note that this output may vary. So, in

some cases, you may also see that Method2() starts before Method1(). So, if you want

Method1() to start first, you can put a small Sleep() before the Method2() execution.

You can see that Method2() ran inside the main thread, whereas Method1() executed in a

different thread.

If you prefer to use lambda expressions, you could replace the following code

segment

private static async Task ExecuteTaskOne()

{

 await Task.Run(Method1);

}

private static void Method1()

{

 Console.WriteLine("Method1() has started.");

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

584

 Console.WriteLine("Inside Method1(),Thread id {0} .", Thread.

CurrentThread.ManagedThreadId);

 // Some big task

 Thread.Sleep(1000);

 Console.WriteLine("Method1() has completed its job now.");

}

with this one.

// Using lambda expression

private static async Task ExecuteMethod1()

{

 await Task.Run(() =>

 {

 Console.WriteLine("Method1() has started.");

 Console.WriteLine("Inside Method1(),Thread id {0} .", Thread.

CurrentThread.ManagedThreadId);

 // Some big task

 Thread.Sleep(1000);

 Console.WriteLine("Method1() has completed its job now.");

 }

);

}

Now in the previous demonstration, instead of calling ExecuteTaskOne(), you can

directly call the ExecuteMethod1() method to get a similar output.

Note In the previous example, you see a warning message for the following line:
ExecuteMethod1(); which tells the following:

Warning CS4014 Because this call is not awaited, execution of the
current method continues before the call is completed. Consider
applying the 'await' operator to the result of the call.

If you hover your mouse on this, you get two suggestions: One of these suggestion

tells you to apply discard as follows.

_ = ExecuteMethod1(); // applying discard

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

585

Note The discards have been supported since C# 7.0. These are temporary,
dummy, and unused variables in an application. since these variables may not
be on allocated storage, they can reduce memory allocations. These variables
can enhance better readability and maintainability. you use an underscore (_) to
indicate a discard variable in your application.

But if you follow the second suggestion and insert await before the line, like in the

following.

await ExecuteMethod1();

The compiler raises another error that states the following.

Error CS4033 The 'await' operator can only be used within an async method.

Consider marking this method with the 'async' modifier and changing its

return type to 'Task'.

To remove this error, you need to make the containing async method (i.e., now you

start with the following line.

static async Task Main(string[] args)

After applying async/await pair, the Main() method may look like the following.

class Program

{

 // static void Main(string[] args)

 static async Task Main(string[] args)

 {

 Console.WriteLine("***Exploring task-based asynchronous

pattern(TAP) using async and await.****");

 Console.WriteLine("Inside Main().Thread ID:{0}", Thread.

CurrentThread.ManagedThreadId);

 await ExecuteMethod1();

 // remaining code

This overall discussion is made to remind you that you should apply async/await

together and place them properly.

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

586

I finish the chapter with one final demonstration, and this time, I slightly modify

the calling sequence of the application. Now I introduce another method called

Method3(), which is similar to Method2(). This newly added method can be called from

ExecuteTaskOne(), which has the following structure.

private static async Task ExecuteTaskOne()

{

 Console.WriteLine("Inside ExecuteTaskOne(), prior to await()

call.");

 int value=await Task.Run(Method1);

 Console.WriteLine("ExecuteTaskOne(), after await() call.");

 // Method3 will be called if Method1 executes successfully

 if (value = = 0)

 {

 Method3();

 }

}

Take a look at the previous segment of code. It simply says that I want to grab the

return value from Method1(), and based on that value, I decide whether I call Method3()

or not. So, this time, Method1()’s return type is not void; instead, it is returning an int (0

for successful completion, otherwise -1), and this method is restructured with a try-

catch block like the following.

private static int Method1()

{

 int flag = 0;

 try

 {

 Console.WriteLine("Method1() has started.");

 Console.WriteLine("Inside Method1(),Thread id {0} .", Thread.

CurrentThread.ManagedThreadId);

 // Some big task

 Thread.Sleep(1000);

 Console.WriteLine("Method1() has completed its job now.");

 }

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

587

 catch (Exception e)

 {

 Console.WriteLine("Caught Exception {0}", e);

 flag = -1;

 }

 return flag;

}

Now go through the following example.

 Demonstration 13
Here is the complete demonstration.

using System;

using System.Threading;

using System.Threading.Tasks;

namespace AsyncAwaitAlternateDemonstration

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Exploring task-based asynchronous

pattern(TAP) using async and await.****");

 Console.WriteLine("***This is a modified example with three

methods.***");

 Console.WriteLine("Inside Main().Thread ID:{0}", Thread.

CurrentThread.ManagedThreadId);

 /*

 This call is not awaited.So,the current method

 continues before the call is completed.

 i.e., following async call is not awaited.

 */

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

588

 _ = ExecuteTaskOne();

 Method2();

 Console.ReadKey();

 }

 private static async Task ExecuteTaskOne()

 {

 Console.WriteLine("Inside ExecuteTaskOne(), prior to await()

call.");

 int value = await Task.Run(Method1);

 Console.WriteLine("Inside ExecuteTaskOne(), after await()

call.");

 /*

 Method3() will be called if Method1()

 executes successfully(i.e. if it returns 0)

 */

 if (value == 0)

 {

 Method3();

 }

 }

 private static int Method1()

 {

 int flag = 0;

 try

 {

 Console.WriteLine("Method1() has started.");

 Console.WriteLine("Inside Method1(),Thread id {0} .",

Thread.CurrentThread.ManagedThreadId);

 //Some big task

 Thread.Sleep(3000);

 Console.WriteLine("Method1() has completed its job now.");

 }

 catch (Exception e)

 {

 Console.WriteLine("Caught Exception {0}", e);

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

589

 flag = -1;

 }

 return flag;

 }

 private static void Method2()

 {

 Console.WriteLine("Method2() has started.");

 Console.WriteLine("Inside Method2(),Thread id {0} .", Thread.

CurrentThread.ManagedThreadId);

 Thread.Sleep(100);

 Console.WriteLine("Method2() is completed.");

 }

 private static void Method3()

 {

 Console.WriteLine("Method3() has started.");

 Console.WriteLine("Inside Method3(),Thread id {0} .", Thread.

CurrentThread.ManagedThreadId);

 Thread.Sleep(100);

 Console.WriteLine("Method3() is completed.");

 }

 }

}

 Output

The following is a possible output.

***Exploring task-based asynchronous pattern(TAP) using async and

await.****

This is a modified example with three methods.

Inside Main().Thread ID:1

Inside ExecuteTaskOne(), prior to await() call.

Method1() has started.

Inside Method1(),Thread id 4 .

Method2() has started.

Inside Method2(),Thread id 1 .

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

590

Method2() is completed.

Method1() has completed its job now.

Inside ExecuteTaskOne(), after await() call.

Method3() has started.

Inside Method3(),Thread id 4 .

Method3() is completed.

 Analysis

Look at the output closely. You can see that Method3() needed to wait for Method1()’s

completion, but Method2() could finish its execution before Method1() ends its

execution. Here Method3() can continue if the returned value from Method1() is 0 only

(if there is any exception raised inside Method1(), I set the flag value to –1). So, this

scenario is similar to the ContinueWith() method in demonstration 11.

POINT TO NOTE

In demonstration 13, notice the following line of code inside ExecuteTaskOne().

int value=await Task.Run(Method1);

It simply divides the code segment into two parts: prior call to await and post call to await.
This syntax is like any synchronous call, but by using await (inside an async method), you

apply a suspension point and use the power of asynchronous programming.

I finish this chapter with some interesting notes from Microsoft. They can be handy

when you further explore async/await keywords. Remember the following points.

• The await operator cannot be present in the body of a lock statement.

• You may see multiple await operators inside the body of an async

method. But if it is not there, this does not raise any compile-

time error. Instead, you get a warning, and the method executes

synchronously. So, you may notice the following warning in a similar

context: Warning CS1998 This async method lacks 'await'

operators and will run synchronously. Consider using the

'await' operator to await non-blocking API calls, or 'await

Task.Run(...)' to do CPU-bound work on a background thread.

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

591

A big chapter! Hopefully, I was able to demystify the different patterns in

asynchronous programming. Although the IAsyncResult pattern and event-based

asynchrony are not recommended in the upcoming chapters, I discussed them in this

chapter because they help you understand legacy code, they show you the evolution of

asynchronous programming. You may find them useful in the future.

This is the end of my discussions on patterns. I hope that you enjoyed learning these

patterns. Now you are ready to jump into the vast ocean of programming using various

patterns. Let’s explore the remaining corner cases, which can’t be mastered without

practice. So, keep coding.

CHAPTEr 27 PATTErNs IN AsyNCHroNoUs ProgrAMMINg

PART III

Final Thoughts on
Design Patterns

595
© Vaskaran Sarcar 2020
V. Sarcar, Design Patterns in C#, https://doi.org/10.1007/978-1-4842-6062-3_28

CHAPTER 28

Criticisms of Design
Patterns
Design patterns let you benefit from other people’s experiences, which is often called

experience reuse. You learn how they solved problems, how they tried to adopt new

behaviors in their systems, and so on. A pattern may not perfectly fit into your work,

but if you concentrate on the best practices as well as the problems of a pattern at the

beginning, you are more likely to make a better application. This is why I will now

discuss design pattern criticisms. Knowing about them can offer you some real value. If

you think critically about patterns before you design your software, you can predict your

return on investment to some degree. Let’s go through the following points that are often

raised by some developers:

• The concept of patterns came through Christopher Alexander. He

was an architect, but not a computer programmer. He considered

the domain that did not change a lot over the years (compared to the

software industry). On the contrary, the software industry is always

changing, and the changes to software development are much faster

than any other domain. This is why critics often say that you cannot

start from a domain (of buildings and towns) that Christopher

Alexander considered.

• The way you wrote a program in the early days of programming

compared to today is very different. Currently you enjoy more

facilities compared to early days of programming (e.g., bigger storage,

super-fast computing capabilities etc). So, when you extract patterns

based on old practices, you show additional respect to them.

https://doi.org/10.1007/978-1-4842-6062-3_28#DOI

596

• Many patterns are similar, and there are always pros and cons

associated with each of the patterns. (I discussed them in the “Q&A

Sessions” at the end of each chapter.) A pitfall in one case can be a

real virtue in a different case.

• The pattern that is giving you satisfactory results today may be a big

burden to you in the future due to continuous change in the software

industry.

• It is very unlikely that the infinite number of requirements can be

well designed with a finite number of design patterns.

• Designing software is an art. And there is no definition or criteria for

the best art.

• Design patterns give you the idea but not the implementations

(like libraries and frameworks). You know that each human

mind is unique. So, each engineer may have his preferences for

implementing a similar concept, and that can create chaos in a team

if mindsets widely vary.

• Consider a simple example. Patterns encourage people to code to

a supertype (abstract class/ interface). But for a simple application

where you know that there are no upcoming changes, or the

application is created for a demo purpose only, this idea may not

make much sense to you.

• Similarly, in some smaller applications, you may find that enforcing

the rules of design patterns is increasing your code size and

maintenance costs.

• Erasing the old and adopting the new is not always easy. For example,

when you first learned about inheritance, you were excited. You

probably wanted to use it in many ways and were seeing only the

benefits from the concept. But later, when you started experimenting

with design patterns, you started learning that in many cases,

compositions are preferred over inheritance. This shifting of

programming mindsets is not easy.

Chapter 28 CritiCisms of Design patterns

597

• Design patterns are based on some of the key principles, and one

of them is to identify the code that may vary and then separate it

from the rest of the code. It sounds very good from a theoretical

perspective. But in real-world implementations, who guarantees that

your judgment is perfect? The software industry always changes, and

it needs to adapt to new requirements/demands continuously.

• Many patterns are already integrated into modern-day languages.

Instead of implementing a pattern from scratch, you can use the

built-in support in the language constructs.

• Inappropriate use of patterns can lead to antipatterns (e.g.,

inappropriate use of the Mediator pattern can lead to the God Class

antipattern). I provide an overview of antipatterns in Chapter 29.

• Many people believe that the concepts of design patterns simply

indicate that a programming language may need some additional

features. So, patterns have less significance with the increasing

capability of modern-day programming languages. Wikipedia says

that computer scientist Peter Norvig believes that 16 out of the 23

patterns in the GoF design patterns are simplified or eliminated via

direct language support in Lisp or Dylan. You see similar thoughts at

https://en.wikipedia.org/wiki/Software_design_pattern.

• The patterns I discuss in this book are solely based on object-

oriented programming. The efficiency and applicability of these

patterns are questionable in other domains.

• These patterns are not interchangeable.

• In the end, design patterns help you benefit from others’ experiences.

You get their thoughts; you come to know how they encountered the

challenges, how they implemented new behaviors in their systems,

and so forth. But if you dive deep down to the basic thought, you

find that you start with the assumption that a beginner or relatively

less experienced person cannot solve a problem better than his/her

seniors. Sometimes, a relatively less experienced person has a better

vision than his seniors, and he proves himself more effective.

Chapter 28 CritiCisms of Design patterns

https://en.wikipedia.org/wiki/Software_design_pattern

598

 Q&A Session
28.1 Is there any catalog for these patterns?
I started with the GoF’s 23 design patterns and then discussed some more patterns in

this book. The GoF’s catalog is considered the most fundamental pattern catalog.

Many other catalogs focus on domains. The Portland Patterns Repository and The

Hillside Group’s website are well-known in this context. You can get valuable insights

and thoughts from these resources. The Hillside Group website also features information

on various conferences and workshops.

As a starting point, you can visit https://wiki.c2.com/?PortlandPattern

Repository and https://hillside.net/patterns/patterns-catalog.

Note at the time of this writing, the UrLs mentioned in this book work fine, but
they may change in the future.

28.2 Why are you silent about other patterns?
These are my personal beliefs.

• Computer science will keep growing, and you will keep getting new

patterns.

• If you are not familiar with the fundamental patterns, you cannot

evaluate the true needs of the remaining or upcoming patterns. For

example, if you know MVC well, you can see how it is different from

model-view-presenter (MVP) and understand why MVP is needed.

• This book is already big. A more detailed discussion of each pattern

would require many more pages, which would make the size of this

book too big to digest.

So, in this book, I focused on fundamental patterns that are still relevant in today’s

programming world.

28.3 I often see the word force with the description of design patterns. What does
it mean?

It is the criteria based on which developers justify their developments. Broadly, your

target and current constraints are two important parts of your force. Therefore, when you

develop your application, you can justify your development with these parts.

Chapter 28 CritiCisms of Design patterns

https://wiki.c2.com/?PortlandPatternRepository
https://wiki.c2.com/?PortlandPatternRepository
https://hillside.net/patterns/patterns-catalog

599

28.4 In various forums, I see that people are fighting about the pattern definition
and say something like, “A pattern is a proven solution to a problem in a context.”
What does that mean?

This is a simple and easy-to-remember definition of what a pattern is. But simply

breaking it down into three parts (problem, context, and solution) is not enough.

For example, you are on your way to the airport, and you are in a hurry. Suddenly,

you realize that you left your boarding pass at home. Let’s analyze the situation.

Problem: You need to reach the airport on time.

Context: You left your boarding pass at home.

The solution that may come to you is to turn back and rush home to get the

boarding pass.

This solution may work once, but can you apply the same procedure repeatedly? You

know the answer. It is not an intelligent solution because it depends on how much time

you currently have to return home to get the boarding pass and then get to the airport. It

also depends on the current traffic and many other factors. So, even if you’re successful

once, you want to prepare yourself for a better solution for a similar situation in the

future.

Try to learn the meaning, intent, context, and so on, to understand a pattern clearly.

28.5 I am confused when I see similar UML diagrams for two different patterns.
Also, I am further confused with the classification of the patterns in many cases.

This is perfectly natural. The more you read and analyze the implementations, and

the more you try to understand the intent behind these designs, the distinctions among

them will become clearer to you.

28.6 When should I consider writing a new pattern?
Writing a new pattern is not easy. You need to study and evaluate the available

patterns. But if you do not find an existing pattern to serve your domain-specific

needs, you may need to write your own pattern. It is best if your solution passes

the Rule of Three, which says that to achieve a tag pattern, a solution needs to be

successfully applied in a real-world solution at least three times. Once you have done

this, you can let others know about it, participate in discussion forums, and get feedback

from others. This activity can help both you and the development community.

Chapter 28 CritiCisms of Design patterns

601
© Vaskaran Sarcar 2020
V. Sarcar, Design Patterns in C#, https://doi.org/10.1007/978-1-4842-6062-3_29

CHAPTER 29

AntiPatterns
The discussion of design patterns cannot be completed without discussing antipatterns.

The following chapter covers a brief overview of antipatterns. Let’s start.

 Overview
In real-world application development, sometimes you may follow some approaches

which are very attractive at the beginning, but in the long run, they create problems. For

example, you may try to get a quick fix to meet a delivery deadline. But if you are not

aware of the potential pitfalls, you may need to pay a big penalty for those mistakes.

Antipatterns alert you about the common mistakes that can lead a problem to a bad

solution, so that, you can take precautionary measures. The proverb “prevention is better

than the cure” suits in this context.

POINTS TO REMEMBER

Antipatterns alert you to common mistakes by describing how attractive approaches can make

your life difficult in the future. At the same time, they suggest alternate solutions that may

seem tough or ugly at the beginning but ultimately help you build a better solution. In short,

antipatterns identify problems with established practices, and they can map general situations

to a specific class of highly productive solutions. They can also provide you better plans to

reverse some bad practices to make those healthy solutions.

https://doi.org/10.1007/978-1-4842-6062-3_29#DOI

602

 A Brief History of AntiPatterns
The original idea of design pattern came from building architect Christopher Alexander,

a professor at Berkeley. He shared his ideas for the construction of buildings within

the well-planned towns. Gradually, these concepts entered software development,

and they gained popularity through leading-edge software developers like Ward

Cunningham and Kent Beck. In 1994, the idea of design patterns entered the mainstream

of object-oriented software development through an industry conference called Pattern

Languages of Program Design (PLoP) on design patterns. The Hillside Group hosted

it, and Jim Coplien’s paper “A Development Process Generative Pattern Language” is

a famous for its context. And with the launch of the classic textbook Design Patterns:

Elements of Reusable Object-Oriented Software by the GoF, the ideas of design patterns

became extremely popular.

Undoubtedly, these great ideas of design patterns helped (and are still helping)

programmers to develop high-quality software. But in some cases, people started

noticing the negative impacts also. Here is a common example. Many developers wanted

to show their expertise without the true evaluation or consequences of these patterns in

their specific domains. As an obvious side effect, patterns were implanted in the wrong

context, produced low-quality software, and ultimately resulted in large penalties for the

developers or their organizations.

So, the software industry needed to focus on the negative consequences of similar

kinds of mistakes, and eventually, the idea of antipatterns evolved. Many experts

started contributing to this field, but the first well-formed model came through Michael

Akroyd’s presentation titled “AntiPatterns: Vaccinations against Object Misuse.” It was

the antithesis of the GoF’s design patterns.

The term antipattern became popular with the book AntiPatterns: Refactoring

Software, Architectures, and Projects in Crisis by William Brown et al. (John Wiley & Sons,

1998). The following is from the book.

Because AntiPatterns have had so many contributors, it would be unfair to
assign the original idea for AntiPatterns to a single source. Rather,
AntiPatterns are a natural step in complementing the work of the design
pattern movement and extending the design pattern model.

ChApTer 29 AnTIpATTerns

603

 Examples of AntiPatterns
These are some examples of the antipatterns and the concepts/mindsets behind them.

• Over Use of Patterns Developers may try to use patterns at any cost,

regardless of whether it is appropriate or not.

• God Class A big object that tries to control almost everything with

many unrelated methods. Inappropriate use of the Mediator pattern

may end up as an antipattern.

• Not Invented Here I am a big company, and I want to build

everything from scratch. Although there is already a library available

developed by another company, I will not use that. I will make

everything on my own, and once it is developed, I will use my brand

value to announce, “Hey guys, the ultimate library has been launched

for you.”

• Zero Means Null As a common example, developers think that no

one wants to be at latitude zero and longitude zero. Another common

variation is seen when a programmer uses –1, 999, or anything like

that to represent an inappropriate integer value. Another erroneous

use case is when a user treats “09/09/9999” as a null date in an

application. So, in the preceding cases, if the user needs to have the

numbers –1 or 999, or the date “09/09/9999”, he will not get it.

• Golden Hammer Mr. X believes that technology T is always best. So,

if he needs to develop a new system (that demands new learning), he

will prefer T even if it is inappropriate. He thinks, “I am quite busy.

I do not need to learn any more technology if I can somehow

manage with T.”

• Shoot the Messenger I’m already under pressure, and the program

deadline is approaching. The tester, John, always finds typical defects

that are hard to fix. Also, John does not like me, so he likes to find

defects in my code. So, at this stage, I do not want to involve him; he

will find more defects, and I will miss the target deadline.

ChApTer 29 AnTIpATTerns

604

• Swiss Army Knife Demand for a product that can serve a customer’s

every need, like a drug that can cure all illnesses, a software that

serves a wide range of customers with varying needs—it does not

matter how complex the interface is.

• Copy and Paste Programming I need to solve a problem, but

I already have a piece of code that deals with a similar situation. So,

I can copy the old code that works, and then I modify it if required.

But when you start from an existing copy, you essentially inherit all

the potential bugs associated with it. Also, if the original code needs

to be modified in the future, you need to implement the modification

in multiple places. This approach also violates the Don’t Repeat

Yourself (DRY) principle.

• Architects Don’t Code I am an architect. My time is valuable.

I only show paths or give great lectures on coding. There are enough

implementers who should implement my idea. Architects Play Golf is

also a sister of this antipattern.

• Hide and Hover Do not expose all edit or delete links until the user

hovers over the element.

• Disguised Links and Ads Fool your users and earn revenue when

they click a link or an advertisement, although they cannot get what

they want.

• Management by Numbers The greater the number of commits, the

greater the number of lines of code, or the greater the amount of

defect fixing are signs of a great developer.

Measuring programming progress by lines of code is like measuring
aircraft building progress by weight.

—Bill Gates

ChApTer 29 AnTIpATTerns

605

POINTS TO NOTE

• nowadays, you can learn about various antipatterns from different websites/

sources; for example, https://en.wikipedia.org/wiki/Anti-pattern.

• You can also get a detailed list of the antipattern catalog at http://wiki.c2.

com/?AntiPatternsCatalog.

• You may also notice that the concept of antipatterns is not limited to object-

oriented programming.

 Types of AntiPatterns
Antipatterns can belong to different categories. Even a typical antipattern can belong to

more than one category. Here are some common classifications.

• Architectural antipatterns The Swiss Army Knife antipattern is an

example in this category.

• Development antipatterns The God Class, Overuse of Patterns are

examples in this category.

• Management antipatterns The Shoot the Messenger antipattern falls

into this category.

• Organizational antipatterns The Architects Don’t Code, Architects

Play Golf belong in this category.

• User Interface antipatterns Examples include Disguised Links/Ads.

Note Disguised links/Advertisements are also called Dark patterns.

ChApTer 29 AnTIpATTerns

https://en.wikipedia.org/wiki/Anti-pattern
http://wiki.c2.com/?AntiPatternsCatalog
http://wiki.c2.com/?AntiPatternsCatalog

606

 Q&A Session
29.1 How are antipatterns related to design patterns?
When you use design patterns, you reuse the experiences of others who came before

you. When you start blindly using those concepts for the sake of use only, you fall into

the traps of reuse of recurring solutions. This can lead you to a bad situation later on, and

then you discover that your return on investment (ROI) is decreasing, but maintenance

costs are increasing. Simply put, the easy and attractive solutions (or patterns) may cause

more problems for you in the future.

29.2 A design pattern may turn into an antipattern. Is this correct?
Yes, if you apply a design pattern in a wrong context that can cause more trouble

than the problem it solves and eventually it will turn into an antipattern. So, before you

start, understanding the nature and context of the problem is very important.

29.3 Antipatterns are related to software developers only. Is this correct?
No. The usefulness of an antipattern is not limited to developers. It may apply to

others; for example, it is useful to managers and technical architects also.

29.4 Even if you do not get much benefit from antipatterns now, these can help
you easily adapt new features with lower maintenance costs in the future. Is this
correct?

Yes.

29.5 What are the probable causes of an antipattern?
They can come from various sources or mindsets. The following lists a few common

examples of what someone might say (or think).

• “We need to deliver the product as soon as possible.”

• “We have a very good relationship with the customer. So, at present,

we do not need to analyze future impact.”

• “I am an expert on reuse. I know design patterns very well.”

• “We use the latest technologies and features to impress our

customers. We do not need to worry about legacy systems.”

• “More complicated code reflects my expertise in the subject.”

ChApTer 29 AnTIpATTerns

607

29.6 Can you list some of the symptoms of antipatterns?
In object-oriented programming (OOP), the most common symptom is your system

cannot easily adapt a new feature. Also, maintenance costs continuously increase.

You may also notice that you have lost the power of key object-oriented features like

inheritance, polymorphism, and so forth.

Apart from this, you may see the following symptoms.

• Use of global variables

• Code duplication

• Limited/no reuse of code

• One big class (God Class)

• A large number of parameterless methods etc.

29.7 What is the remedy if you detect an antipattern?
You may need to refactor your code and find a better solution. For example, here are

some solutions to the following antipatterns.

• Golden Hammer Try to educate Mr. X through some proper training.

• Zero Means Null Use an additional boolean variable, which is more

sensible to you to indicate the null value properly.

• Management by Numbers Numbers are good if you use them

wisely. You cannot judge the ability of a programmer by the number

of defects he fixes each week. Quality is also important. A typical

example is that fixing a simple UI layout is much easier than fixing

a critical memory leak in the system. Consider another example.

“A greater number of tests are passing” does not indicate that your

system is more stable unless these tests exercise different code paths/

branches.

• Shoot the Messenger Welcome tester John and involve him

immediately. Don’t consider him your rival. You can properly

analyze his findings and fix the real defects early to avoid last-minute

surprises.

ChApTer 29 AnTIpATTerns

608

• Copy and Paste programming Instead of searching for a quick

solution, you can refactor your code. You can also create a common

place to maintain frequently used methods to avoid duplicates and to

make maintenance easier.

• Architects Don’t Code Involve architects in some parts of the

implementation phase. This can help both the organization and the

architect. It gives them a clearer picture of the true functionalities of

the product. This process also helps them to value your efforts.

29.8 What do you mean by refactoring?
In the coding world, the term refactoring means improving the design of existing

code without changing the external behavior of the system/application. This process

helps you have more readable code. At the same time, this code should be more

adaptable to new requirements (or change requests), and they should be more

maintainable.

ChApTer 29 AnTIpATTerns

609
© Vaskaran Sarcar 2020
V. Sarcar, Design Patterns in C#, https://doi.org/10.1007/978-1-4842-6062-3_30

CHAPTER 30

FAQ
This chapter is a subset of the “Q&A Session” sections of all the chapters in this book.

Many of these questions were not discussed in specific chapters because the related

patterns were not covered yet. I highly recommend that in addition to the following

Q&As, you go through all the “Q&A Session” sections in the book to better understand

the patterns.

30.1 Which design pattern do you like the most?
It depends on many factors, such as the context, situation, demand, constraints, and

so on. If you know about all the patterns, you will have more options to choose from.

30.2 Why should developers use design patterns?
A common answer is that they are reusable solutions for software design problems

that repeatedly appear in real-world software development. But I mentioned it before

(for example, in the Q&A session of Chapter 28), you need to analyze various aspects,

such as the context and intent of the problem before you implement a pattern.

30.3 What is the difference between the Command and Memento patterns?
All actions are stored for the Command pattern, but the Memento pattern saves the

state only on request. Additionally, the Command pattern can support undo operations

for every action, but the Memento pattern does not need that. I strongly recommend you

to visit the Q&A 19.4 from Chapter 19 to understand the difference clearly.

30.4 What is the difference between the Facade pattern and the Builder pattern?
The Facade pattern aims to make a specific portion of code easier to use. It abstracts

details away from the developer.

The Builder pattern separates the construction of an object from its representation.

In Chapter 3, the director is calling the same method, Construct() in demonstration 1

and ConstructCar() in demonstration 2, to create different types of vehicles. In other

words, you can use the same construction process to create multiple types.

https://doi.org/10.1007/978-1-4842-6062-3_30#DOI

610

30.5 What is the difference between the Builder pattern and Strategy pattern?
They have similar UML representations.

First, you must examine the intent. The Builder pattern falls into the category of

creational patterns, and the Strategy pattern falls into the category of behavioral patterns.

Their areas of focus are different. When you consider the Builder pattern, you can use

the same construction process to create different types, when you use the Strategy

pattern, you have the freedom to select an algorithm at runtime.

30.6 What is the difference between the Command pattern and the Interpreter
pattern?

In the Command pattern, commands are objects. In the Interpreter pattern, the

commands are sentences. In the Interpreter pattern, you can make your own rule for

evaluation and build the syntax tree. For a simple grammar, it is fine, but it becomes

tough to implement when your grammar is complex. It is because the cost of building an

interpreter can be a big concern for you.

30.7 What is the difference between the Chain of Responsibility pattern and
Observer pattern?

For the Observer pattern, all registered users are notified or get requests (for the

change in the subject) in parallel. For the Chain of Responsibility pattern, you may not

reach the end of the chain, so all users do not need to handle the same scenario. The

request can be processed much earlier by some user who is placed at the beginning of

the chain. I suggest that you refer to Q&A 14.4.

30.8 What is the difference between the Chain of Responsibility pattern and
Decorator pattern?

They are not the same at all, but you may think that they are similar in their

structures. Like FAQ 30.7, in the Chain of Responsibility pattern, in general, only one

class handles a request, but in the Decorator pattern, all classes handle a request. You

must remember that decorators are effective in the context of adding and removing

responsibilities only. If you can combine the Decorator pattern with the single

responsibility principle, you can add (or remove) a single responsibility at runtime.

30.9 What is the difference between the Mediator pattern and the Observer pattern?
The GoF says, “These are competing patterns. The difference between them is that

Observer distributes communication by introducing observer and subject objects,

whereas a mediator object encapsulates the communication between other objects.”

Chapter 30 FaQ

611

Here I suggest you consider the examples of the Mediator pattern in Chapter 21. In

demonstration 2, I explained that a sender could receive a message to the target receiver

if he is online. I described how to restrict an outsider and promote security. But in the

observer pattern, a subject/broadcaster normally does not care about its observer’s state.

It simply broadcast the messages.

The GoF book is telling that you may face fewer challenges when making reusable

observers and subjects than when making reusable mediators, but regarding the flow of

communication, Mediator scores higher than Observer.

30.10 Which one do you prefer, a singleton class or a static class?
It depends. First, you can create objects of a singleton class, which is not possible

with a static class. So, the concepts of inheritance and polymorphism can be

implemented with a singleton class. Also, some developers believe that mocking a static

class (e.g., consider unit testing scenarios) in a real-world application is challenging.

30.11 How do you distinguish between proxies and adapters?
Proxies work on similar interfaces as their subjects. Adapters work on different

interfaces (to the objects they adapt).

30.12 How are proxies different from decorators?
There are different types of proxies, and they vary by implementation. So, some of

these implementations may be close to decorators. For example, a protection proxy

might be implemented like a decorator. But you must remember that decorators focus

on adding responsibilities, while proxies focus on controlling the access to an object.

30.13 How are mediators different from facades?
In general, both simplify a complex system. In a Mediator pattern, a two-way

connection exists between a mediator and the internal subsystems. In contrast, in a

Facade pattern, you generally provide a one-way connection (the subsystems do not

know about facades).

30.14 Is there any relation between the Flyweight pattern and the State pattern?
The GoF book mentions that the Flyweight pattern can help you to decide when and

how to share the state objects.

Chapter 30 FaQ

612

30.15 What are the similarities among the Simple Factory, Factory Method, and
Abstract Factory design patterns?

All of them encapsulate object creation, which suggests that you code to the

abstraction (interface) but not to the concrete classes. Simply put, each of these factories

promotes loose coupling by reducing the dependencies on concrete classes.

30.16 What are the differences among the Simple Factory, Factory Method, and
Abstract Factory design patterns?

This is an important question that you may face in various job interviews. First,

refer to Q&A 5.3 in Chapter 5, and if needed, go through all the Q&A sessions in

Chapters 4 and 5.

30.17 How do you distinguish the Singleton pattern from the Factory Method
pattern?

The Singleton pattern ensures that you get a unique instance each time. It also

restricts the creation of additional instances.

But the Factory Method pattern does not say that you only get a unique instance.

Most often, this pattern creates as many instances as you want, and the instances are not

necessarily unique. These newly typed instances may implement a common base class.

(Just remember that the Factory method lets a class defer instantiation to subclasses,

according to the GoF definition.)

30.18 How does the Template Method pattern differ from the Strategy pattern?
In the Strategy pattern, you can vary the entire algorithm using delegation. On

the other hand, using the Template Method pattern, you vary only certain steps in an

algorithm using inheritance, but the overall flow of the algorithm is unchanged.

30.19 How do you distinguish the Visitor pattern from the Strategy pattern?
In the Strategy pattern, each subclass uses a different algorithm to solve a common

problem. But in a Visitor design pattern, each of visitor subclasses may provide different

functionalities from each other.

30.20 How null objects are different from proxies?
In general, proxies act on real objects at some point in time, and they may also

provide some behavior. But a null object does not do any such operation.

Chapter 30 FaQ

613

30.21 How do you distinguish the Interpreter pattern from the Visitor pattern?
With the interpreter pattern, you represent simple grammar as an object structure,

but in a Visitor pattern, you define some specific operations that you want to use on an

object structure. In addition to this, an interpreter has direct access to the properties

that are needed, but in a Visitor pattern, you need special functionalities (similar to an

observer) to access them.

30.22 How do you distinguish the Flyweight pattern from the Object Pool pattern?
I did not discuss the Object Pool pattern in this book. But if you know the Object Pool

pattern already, you notice that in the Flyweight pattern, flyweights can have intrinsic

and extrinsic states. So, if a flyweight has both states, its states are divided, and the

client needs to pass part of the state to it. Also, in general, the client does not change the

intrinsic state because it is shared.

Object Pool does not store any part of the state outside; all state information is

stored/encapsulated inside the pooled object. Also, clients can change the state of a

pooled object.

30.23 How are libraries or frameworks similar to and different from design
patterns?

They are not design patterns. They provide the implementations which you can

use directly in your application. But they can use the concept of the patterns in those

implementations.

30.24 What is a callback method?
It is a method that can be invoked after you perform some specific operations. You’ll

often see the usage of this kind of method in asynchronous programming, and it can be

useful when you do not know the exact finishing time of prior operations, but you want

to start some specific task once the prior task is over. You should refer to demonstration 7

in Chapter 27 to understand it better.

Chapter 30 FaQ

615
© Vaskaran Sarcar 2020
V. Sarcar, Design Patterns in C#, https://doi.org/10.1007/978-1-4842-6062-3

 APPENDIX A

A Brief Overview of GoF
Design Patterns
We all have unique thought processes. So, in the early days of software development,

engineers faced a common problem—there was no standard to instruct them on how

to design their applications. Each team followed its own style, and when a new member

(experienced or inexperienced) joined an existing team, understanding the architecture

was a gigantic task. Senior or experienced members of the team would need to explain

the advantages of the existing architecture and why alternative designs were not

considered. The experienced developer also would know how to reduce future efforts

by simply reusing the concepts already in place. Design patterns address this kind of

issue and provide a common platform for all developers. You can think of them as the

recorded experience of experts in the field. Patterns were intended to be applied in

object-oriented designs with the intention of reuse.

In 1994, Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides published

the book Design Patterns: Elements of Reusable Object-Oriented Software (Addison-

Wesley, 1994). In this book, they introduced the concept of design patterns in software

development. These authors became known as the Gang of Four. I refer to them as the

GoF throughout this book. The GoF described 23 patterns that were developed by the

common experiences of software developers over time. Nowadays, when a new member

joins a development team, the developer is expected to know about the design patterns,

and then the developer learns about the existing architecture. This approach allows a

developer to actively participate in the development process within a short period of

time.

The first concept of a real-life design pattern came from the building architect

Christopher Alexander. During his lifetime, he discovered that many of the problems he

faced were similar. So, he tried to address those issues with similar types of solutions.

https://doi.org/10.1007/978-1-4842-6062-3#DOI

616

Each pattern describes a problem, which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in
such a way that you can use this solution a million times over, without ever
doing it the same way twice.

—Christopher Alexander

The software engineering community started believing that though these patterns

were described for buildings and towns, the same concepts can be applied to patterns

in object-oriented design. So, they felt that we could substitute the original concepts of

walls and doors with objects and interfaces. The common thing in both fields is that, at

their cores, patterns are solutions to common problems.

It is important to note that the GoF discussed the original concepts of design

patterns in the context of C++. But C# 1.0 was released in 2002, and then it went through

various changes. It grew rapidly and secured its rank in the world’s top programming

languages within a short time, and in today’s market, it is always in high demand. At the

time of this writing, C# 8.0 is available with Visual Studio 2019. The concepts of design

patterns are universal. The book is written in C#, but if you are familiar with any other

popular programming languages such as Java, C++, and so on, you can relate because I

primarily focus on the design patterns and not on the latest features of C#. I purposely

chose simple examples to help you understand these concepts easily. Exercising

these fundamental concepts of design patterns using C# always make you a better

programmer and help you to reveal an upgraded version of you. The following are some

important points to remember.

• A design pattern describes a general reusable solution to software

design problems. When developing a software application, you may

encounter these problems frequently. The basic idea is that you can

solve similar kinds of problems with similar kinds of solutions. And

these solutions were tested over a long period of time.

• Patterns provide you a template of how to solve a problem and can be

used in many different situations. At the same time, they help you to

get the best possible design much faster.

• Patterns are descriptions of how to create objects and classes and

customize them to solve a general design problem in a particular

context.

Appendix A A Brief Overview Of GOf desiGn pAtterns

617

The GoF discussed 23 design patterns. Each of these patterns focuses on object-

oriented design. Each pattern can also describe the consequences and trade-offs of use.

The GoF categorized these 23 patterns based on their purposes, as shown next.

 A. Creational Patterns

These patterns abstract the instantiation process. You make the

systems independent from how their objects are composed,

created, and represented. In these patterns, you should have

a basic concern: “Where should I place the new keyword in my

application?” This decision can determine the degree of coupling

of your classes. The following five patterns belong in this category.

• Singleton pattern

• Prototype pattern

• Builder pattern

• Factory Method pattern

• Abstract Factory pattern

 B. Structural Patterns

Here you focus on how classes and objects can be composed to

form a relatively large structure. They generally use inheritance

or composition to group different interfaces or implementations.

Your choice of composition over inheritance (and vice versa) can

affect the flexibility of your software. The following seven patterns

fall into this category.

• Proxy pattern

• Decorator pattern

• Adapter pattern

• Facade pattern

• Flyweight pattern

• Composite pattern

• Bridge pattern

Appendix A A Brief Overview Of GOf desiGn pAtterns

618

 C. Behavioral Patterns

Here you concentrate on algorithms and the assignment of

responsibilities among objects. You also need to focus on

the communication between them and how the objects are

interconnected. The following 11 patterns fall into this category.

• Visitor pattern

• Observer pattern

• Strategy pattern

• Template Method pattern

• Command pattern

• Iterator pattern

• Memento pattern

• State pattern

• Mediator pattern

• Chain of Responsibility pattern

• Interpreter pattern

The GoF made another classification based on scope, namely whether the pattern

primarily focuses on the classes or its objects. Class patterns deal with classes and

subclasses. They use inheritance mechanisms, so, these are static and fixed at compile

time. Object patterns deal with objects that can change at run time. So, object patterns

are dynamic. Factory Method pattern, Interpreter pattern,and Template Method pattern

can be classified as class patterns. Remaining patterns of the GoF can fall into object

patterns. It is interesting to note that depending on the implementation,an Adapter

pattern can fall in both category.

Appendix A A Brief Overview Of GOf desiGn pAtterns

619

Note in this book, each chapter is self-contained, and you can start with any
pattern you like following the guidelines given at the beginning of the book. i use
simple examples so that you can pick up the basic ideas quickly. But you must
read, digest, and practice, and try to link to other problems and keep coding. this
process will help you to master the subject quickly.

 Q&A Session
A.1 What are the differences between class patterns and object patterns?
In general, class patterns focus on static relationships, but object patterns can focus

on dynamic relationships. Class patterns focus on classes and subclasses, and object

patterns focus on an object’s relationships.

Table A-1 shows the summarized content that was discussed in the GoF’s famous

book.

Table A-1. Class Patterns vs Object Patterns

Class Patterns Object patterns

Creational Can defer object creation to its subclasses Can defer object creation to another

object

Structural focuses on the composition of classes

(primarily uses the concept of inheritance)

focuses on the composition of objects

Behavioral describes algorithms and execution flows;

uses inheritance mechanism

describes how different objects work

together to complete a task

A.2 Can I combine two or more patterns in an application?
Yes. In real-world scenarios, this type of activity is common.

A.3 Do these patterns depend on a particular programming language?
Programming languages can play an important role. But the basic ideas are the same,

patterns are just like templates, and they give you an idea in advance of how you can

solve a problem. In this book, I primarily focused on object-oriented programming with

the concept of reuse. But instead of any object-oriented programming language, suppose

Appendix A A Brief Overview Of GOf desiGn pAtterns

620

you have chosen some other language like C. In that case, you may need to think about

the core object-oriented principles such as inheritance, polymorphism, encapsulation,

abstraction, and so on, and how to implement them. So, the choice of language is always

important because it may have some specialized features that can make your life easier.

A.4 Should I consider the common data structures like arrays, linked lists also as
different design patterns?

The GoF excludes those saying that they are not complex, domain-specific designs for

an entire application or subsystem. They can be encoded in classes and reused as-is. So,

they are not your concern in this book.

A.5 If no particular pattern is 100% suitable for my problem, how should I
proceed?

An infinite number of problems cannot be solved with a finite number of patterns for

sure. But if you know these common patterns and their trade-offs, you can pick a close

match. Lastly, no one prevents you from using your own pattern for your own problem.

But you must tackle the risk, and you need to think about your return on investment.

A.6 Do you have any general advice before I jump into the topics?
I always follow the footsteps of my seniors and teachers who are experts in this field.

And here are some of their general suggestions.

• Program to a supertype (Abstract class/Interface), not an

implementation.

• Prefer composition over inheritance in most cases.

• Try to make a loosely coupled system.

• Segregate the code that is likely to vary from the rest of your code.

• Encapsulate what varies.

A.7 How do I use this book effectively?
This book focuses on commonly used design patterns. Most likely, you will face

them very often in your everyday life. But the world is always changing, and new

patterns keep evolving. To understand the necessity of a new pattern, you may also need

to understand why an old/existing pattern is not enough to fulfill the requirement. You

may consider this book as an attempt to make a solid foundation with design patterns

so that you can move smoothly in your professional life, and you can adapt to the

upcoming changes easily.

Appendix A A Brief Overview Of GOf desiGn pAtterns

621
© Vaskaran Sarcar 2020
V. Sarcar, Design Patterns in C#, https://doi.org/10.1007/978-1-4842-6062-3

 APPENDIX B

Useful Resources
This following is a list of useful resources. Many of them use a different programming
language, but you will benefit from reading these great books.

• Design Patterns: Elements of Reusable Object-Oriented Software by

Erich Gamma et al. (Addison-Wesley, 1995)

• Head First Design Patterns by Eric Freeman and Elisabeth Robson

(O’Reilly, 2004)

• Java Design Patterns by Vaskaran Sarcar (Apress, 2018)

• Design Patterns for Dummies by Steve Holzner

(Wiley Publishing, Inc., 2006)

• C# Design Pattern Essentials by Tony Bevis (Ability First Limited,

2012)

• Design Patterns in C# by Jean Paul (Kindle edition, 2012)

The following are helpful online resources/websites.

• http://sourcemaking.com/design_patterns

• https://en.wikipedia.org/wiki/Software_design_pattern

• www.dofactory.com

• www.c-sharpcorner.com

• www.dotnet-tricks.com

• www.codeproject.com

• www.youtube.com/watch?v=ffQZIGTTM48&list=PL8C53D99AB

AD3F4C8

https://doi.org/10.1007/978-1-4842-6062-3#DOI
http://sourcemaking.com/design_patterns
https://en.wikipedia.org/wiki/Software_design_pattern
http://www.dofactory.com
http://www.c-sharpcorner.com
http://www.dotnet-tricks.com
http://www.codeproject.com
http://www.youtube.com/watch?v=ffQZIGTTM48&list=PL8C53D99ABAD3F4C8
http://www.youtube.com/watch?v=ffQZIGTTM48&list=PL8C53D99ABAD3F4C8

622

• www.tutorialspoint.com

• www.dotnetexamples.com

• https://docs.microsoft.com/en-us/

• http://wiki.c2.com/?AntiPatternsCatalog

• http://hillside.net

APPENDIX B UsEfUl REsoURcEs

http://www.tutorialspoint.com
http://www.dotnetexamples.com
https://docs.microsoft.com/en-us/
http://wiki.c2.com/?AntiPatternsCatalog
http://hillside.net

623
© Vaskaran Sarcar 2020
V. Sarcar, Design Patterns in C#, https://doi.org/10.1007/978-1-4842-6062-3

 APPENDIX C

The Road Ahead
Congratulations! You have reached the end of this journey. Anyone can start a journey,

but only a few can complete it with care. So, you are among the minority who possess

the extraordinary capability to cover the distance successfully. I hope that you have

enjoyed your learning experience. If you continue to think about the discussions,

examples, implementations, and the Q&A Sessions in this book, you will have more

clarity, you will feel more confident about the content, and you will remake yourself as

a programmer.

Truly, a more detailed discussion on any design pattern would require this book to

be too big to digest. So, what is next? You should not forget that learning is a continuous

process. This book attempts to encourage in-depth learning of its core concepts.

I believe that only learning and thinking by yourself is not enough. I suggest you

participate in open forums and join discussion groups to get more clarity on this subject.

This process will not only help you; it will help others also.

Lastly, I have a request. You can always point out the areas for improvement, but at

the same time, please let me know what you liked about this book too. In general, it is

always easy to criticize, but an artistic view and an open mind are required to discover

the true efforts that are associated with any work.

Thank you, and happy coding!

https://doi.org/10.1007/978-1-4842-6062-3#DOI

625
© Vaskaran Sarcar 2020
V. Sarcar, Design Patterns in C#, https://doi.org/10.1007/978-1-4842-6062-3

 APPENDIX D

Important Updates in the
Second Edition
This second edition offers descriptive class diagrams and more code explanations in

every chapter. Table D-1 lists the most important updates in this edition.

Table D-1. The Most Important Updates in This Edition

Pattern Name Key Update (or Inclusion)

Singleton Additional implementation using a single lock, Lazy<T>.

Prototype Additional implementation for shallow vs. deep copy.

Builder Additional implementation using method chaining.

Factory Method Shorter and concise implementation; one improved version is added

(using method parameters).

Abstract Factory Implementation fine-tuned and modified.

Proxy Additional code explanation with Q&A is added.

Decorator Implementation modified with more code explanation.

Adapter Implementation fine-tuned; a complete example of class adapter is added.

Facade Implementation made shorter and fine-tuned with additional explanations.

Flyweight Implementation modified with extrinsic and intrinsic states. A factory

class is implemented as a singleton to show an alternative design of

this pattern.

(continued)

https://doi.org/10.1007/978-1-4842-6062-3#DOI

626

Table D-1. (continued)

Pattern Name Key Update (or Inclusion)

Composite Implementation fine-tuned with additional property (designation) and

more code explanation.

Bridge An additional implementation is added.

Visitor Replaced the first implementation with a better one (extended in the

Q&A session), and following the same design, fine-tuned the second

implementation using both the Visitor and the Composite patterns.

Observer Implementation fine-tuned; Now you see multiple celebrities with

multiple observers.

Strategy Better example provided; Q&A session is enhanced.

Template Method Implementation fine-tuned with more Q&A.

Command Old programs are replaced with new programs; additional explanation

for undo, logging, and so forth are included.

Iterator An additional program using C#’s built-in support for iterators is included.

Memento One new implementation using nested class is included. Q&A session is

enhanced.

State More Q&A and explanation are added.

Mediator Minor modification to the programs in previous edition of the book.

Now these programs have both send and receive logic. Additional

explanations are added.

Chain of Responsibility Old program is modified. More code explanation with a real-life example

is added.

Interpreter Pattern One new implementation is added in this chapter. First demo is a

fine-tuned version from previous edition of the book.

Simple Factory Old program is replaced with a shorter and more concise

implementation.

Null Object Pattern More explanation (including null conditional operator) is added. Q&A

session is enhanced.

(continued)

APPeNDIx D IMPORTANT UPDATeS IN The SeCOND eDITION

627

Pattern Name Key Update (or Inclusion)

MVC The Winform application is replaced with a console application.

Asynchronous

Programming

This is a new chapter in this book.

Criticism to Design

Patterns

More information is added.

Antipatterns enhanced with history, types, and examples of antipatterns.

FAQ Fine-tuned with additional questions and answers.

Table D-1. (continued)

APPeNDIx D IMPORTANT UPDATeS IN The SeCOND eDITION

629
© Vaskaran Sarcar 2020
V. Sarcar, Design Patterns in C#, https://doi.org/10.1007/978-1-4842-6062-3

Index

A
AboutMe() method, 84, 90, 145, 147, 155,

159, 181
AboutTriangle() method, 146, 156, 160
Abstract keyword, 92
Abstract class, 69
Abstract creator class, 81, 82
AbstractDecorator class, 130, 141
AbstractExpression, 439
Abstract Factory pattern, 612

challenges, 107
concept, 97, 98
vs. factory method pattern, 108
factory of factories, 97
GoF definition, 97
IAnimalFactory, 99
IDog and ITiger interfaces, 107
implementation

class diagram, 101
demonstration, 102–106
solution explorer view, 102

real-world and computer-world
example, 98

vs. simple factory pattern, 107–109
structure, 98
WildAnimalFactory, 99

Abstract prototype, 27
Action delegate, 568
Adaptee interface method, 160
Adapter pattern

concept, 143
drawbacks, 161
GoF definition, 143
implementation

class adapter, demo, 155–159
class diagram, 148
demonstration, 150–153
IRectangle interface, 145
IRectangle methods, 147
Main() method, 153
Rectangle hierarchy, 146
solution explorer view, 148

real-world and computer-world
example, 143–145

Adapters, 611
AddHeadlights(), 59
Aggregate, 338
AnimalFactory, 82, 85
Antipatterns

causes, 606
concepts, 603, 604
design pattern, 606
examples, 603
history, 602
overview, 601
real-world application development, 601
solutions, 607
symptoms, 607
types, 605

Architectural antipatterns, 605

https://doi.org/10.1007/978-1-4842-6062-3#DOI

630

ArrayList, 365
async and await Keywords, 579–590
async and await keywords, 590
AsyncCompletedEventHandler, 558
Asynchronous callback, 548–555
Asynchronous programming patterns

IAsyncResult (see IAsyncResult
pattern)

lambda expression with ThreadPool
class, 534–538

overview, 521
synchronous approach, 523–525
thread class, 525–527
ThreadPool class, 528–535

AsyncWaitHandle of IAsyncResult,
544–548

AuthenticationErrorHandler, 421

B
Behavioral patterns, 618
Boat class object, 297
Bridge pattern

advantages, 230
approach, 213
challenges, 230
class diagram, 213, 215
concept, 211
concrete implementor, 231
demonstration, 218, 219
designs, 212
ElectronicGoods, demo, 216–220
GoF definition, 211
hierarchies, 213
implementation

abstraction class, 220
class diagram, 224
constructors, 222

demonstration, 225–229
ElectronicGoods, 221
GetDiscount(int percentage)

method, 221
OnlinePrice class, 221
Television class, 222

implementor method, 230
programming, 229
real-world and computer-world

example, 211, 212
solution explorer view, 216
subclassing, 230

BuildBody(), 59
Builder pattern, 609, 610

abstract class, 69
advantages, 68
complex object, 79
complex objects, creation, 57, 58
drawbacks associated, 68
GoF definition, 57
implementation

analysis, 68
class diagram, 60
demonstration, 62–67
Director class, 59
IBuilder interface, 58
solution explorer view, 61

modified implementation
analysis, 79
characteristics, 70
class diagram, 73
demonstration, 74–79
IBuilder, 71
Product class, 71
solution explorer view, 73

real-world and computer-world
example, 58

separate class, director, 70

Index

631

C
CalculateArea() methods, 145, 147
CalculateAreaOfTriangle(), 146, 147
Callback method, 552, 613
CarFactory class, 39
Chain of responsibility pattern, 285, 610

advantages, 434
challenges, 434
concept, 419
GoF definition, 419
implementation

class diagram, 426
demonstration, 428–433
EmailErrorHandler, 424
error handler objects, 425
FaxErrorHandler, 423, 424
Receiver class, 422
segments of code, 421
solution explorer view, 427
UnknownErrorHandler, 425

message priorities, 433
vs. Observer pattern, 435
real-world and computer-world

scenario, 420, 421
Class adapter design pattern, 155, 159, 619
Client object, 315
Clone() method, 29, 51
Command object, 315
Command pattern, 609, 610

advantages, 328
concept, 315
disadvantages, 328
GoF definition, 315
implementation

class diagram, 319
encapsulation, 326
ExecuteCommand() method, 318

GameStartCommand, 316, 317
interface ICommand, 316
program, demo, 321–325
solution explorer view, 320
undo() method, 329

modified implementation
demonstration, 331–335
invoker, 329
UpLevel() and DownLevel(), 330

real-world and computer-world
scenario, 316

Composite design, 255
Composite pattern

advantages, 209
concept, 199
disadvantages, 209
GoF definition, 199
implementation

class diagram, 201
CompositeEmployee class, 203
demonstration, 203–208
DisplayDetails(), 203
solution explorer view, 202
tree structure, organization, 200

Iterator design pattern, 210
real-world and computer-world

example, 200
Composition, 139
ConcreteAggregate, 338
ConcreteBuilder object, 58
ConcreteHome, 130
ConcreteIterator, 338
ConcreteMediator class, 396
Concrete prototypes, 30
ConcreteSubject object, 115
ConcreteSubject instance, 120
Construct() method, 68

Index

632

ConstructRobot(), 167, 175, 176
Context class, 289
ContinueWith() method, 577
Copy constructor, 51
CreateAnimal() method, 91, 93, 475
Creational patterns, 617
CurrentItem() method, 340

D
Data structures, 209, 620
Decorator pattern

advantages, 139
concept, 127
disadvantages, 141
dynamic binding, 142
GoF definition, 127
implementation

AbstractDecorator, 130, 131
class diagram, 132
concrete decorator, 131
ConcreteHome, 130
demonstration, 134–138
FloorDecorator and

PaintDecorator, 130, 131
PaintDecorator, 132
solution Explorer view, 133

inheritance, 139, 141
real-world and computer-world

example, 128, 129
Decorators, 611
Deep copy, 50
Design pattern, 609
Design pattern criticisms, 595–597
DestroyRobot() method, 167, 175, 176
DestroyRobotBody, 164
Details() method, 217

Development antipatterns, 605
Dictionary object, 180
Discount() method, 230
DisplayCourseStructure()

method, 300, 301
DisplayDetails() method, 203, 217
DisplayEnrolledEmployees(), 502
DogFactory and TigerFactory, 85
DoSomeWork(), 114, 115
Double-checked locking, 16
DoubleDiscount() method, 230
DownLevel() method, 331

E
ElectronicGoods abstraction class, 221
EmailErrorHandler, 421, 424
EndInvoke method, 541
EndOperations(), 59
Event-based asynchronous pattern

(EAP), 522
analysis, 561
characteristics, 555
demonstration, 556–561
message box pops up, 565
pros and cons, 565
runtime screenshot, UI application, 564
UI application, 562
WebClient, 556

ExecuteCommand() method, 318, 327
ExecuteMethodOne(), 523
ExecuteMethodThree() method, 573
ExecuteMethodTwo(), 523, 527,

531, 538, 561
ExecuteTaskOne(), 581
Experience reuse, 595
Extrinsic, 178

Index

633

F
Facade class static, 176
Facade pattern, 609, 611

vs. adapter design pattern, 175
advantages, 175
challenges, 176
complex subsystem, 175
compositions, 175
concept, 163
GoF definition, 163
implementation

class diagram, 168
demonstration, 170–174
RobotBody and RobotColor, 167
RobotBody class, 164, 165
RobotColor class, 166
solution explorer view, 169

real-world and computer-world
example, 163

Factory Method pattern, 612
Abstract keyword, 92
advantages, 91
challenges, 91
concept, 81
GoF definition, 81
implementation

class diagram, 83
demonstration, 84–89
solution explorer view, 84

modified implementation
analysis, 91
AnimalFactory class, demo, 89, 90
CreateAnimal(), demo, 94–96

parallel class hierarchies, 92
real-world and computer-world

example, 82
Simple Factory pattern, 93

FactoryProvider, 100
FaxErrorHandler, 423, 425
First() method, 340
FloatBehavior, 296
FloorDecorator, 130
FlyBehavior, 288, 296
Flyweight pattern, 611, 613

advantages, 193
challenges, 194
concept, 177, 178
extrinsic data, 194
GoF definition, 177
implementation

AboutMe() method, 181
analysis, 192
class diagram, 183
demonstration, 184–191
FutureVehicle, 183
GetRandomColor(), 182
intrinsic state, 180
solution explorer view, 184
VehicleFactory, 180, 195–197

intrinsic data, 194
multithreading, 193
object creations, 178
real-world and computer-world

example, 178
vs. Singleton pattern, 192, 193
VehicleFactory, 194

Func delegate, 22, 24
FutureVehicle, 183

G
Game class constructor, 326
GameStartCommand class, 326, 331
GameStartCommand command, 317

Index

634

GetEnumerator() method, 349
GetRandomColor(), 182
GetVehicle() method, 59
GiveThanks() method, 230
GoF design patterns

behavioral patterns, 618
creational patterns, 617
fundamental concepts, 616
structural patterns, 617

Graphical user interface (GUI), 496

H
Handle/Body pattern, 211
Hierarchical inheritance, 140

I, J, K
IAnimalFactory, 99
IAsyncCallback delegate, 548
IAsyncResult pattern, 521

Asynchronous Callback, 548–555
AsyncWaitHandle, 544–548
polling, asynchronous delegates,

538–543
IBuilder interface, 58
ICelebrity interface, 275
IEnumerable interface, 348
IIterator, 340
Immutable objects, 79
IncludeAdditionalPaper(), 307
InsertWheels(), 59
Interpreter pattern, 613

advantages, 462
challenges, 462
concept, 437, 438
GoF definition, 437
implementation

class diagram, 443
Context class, 441
EvaluateInputWithContext, 443
demonstration, 445–449
InputExpression abstract class, 442
solution explorer view, 445

modified implementation
class diagram, 454
concrete classes, 453
Context class constructor, 451
demonstration, 455–461
Employee interface method, 452
rule validator, 450
solution explorer view, 455

real-world and computer-world
scenario, 440

structure, 439
Intrinsic, 178
Invoke() method, 539
IObserver interface, 274
IPossibleStates, 391
IPrice interface, 217
IRectangle interface, 145, 155
IRectangle methods, 147
IsCollectionEnds(), 340
Iterator object, 353
Iterator, 338
Iterator pattern, 338

challenges, 353
concept, 337, 338
diagram, 337
GoF definition, 337
implementation

built-in constructs, demo, 348–352
class diagram, 340
CurrentItem() method, 340
demonstration, 342–348
First() method, 340

Index

635

IsCollectionEnds(), 340
Next() method, 340
solution explorer view, 342

real-world and computer-world
scenario, 338, 339

ITriangle interfaces, 146, 155
IVisitor, 238

L
Lambda expression, 22
Lambda expression with ThreadPool

class, 534–538
Lazy instantiation process, 25, 120
Lazy<Singleton>, 23
Lazy<T> class, 24
Locking mechanism, 17
Loose coupling, 163

M
Main() method, 7, 70, 79, 585
MakeAnimal(), 89, 93
MakeHome() method, 130, 131
MakeRobotBody(), 164, 166
MakeSingletonInstance() method, 25
Management antipatterns, 605
Mediator pattern, 610, 611

advantages, 417
challenges, 417
concept, 393
vs. Facade pattern, 418
GoF definition, 393
implementation

AbstractFriend, 397
analysis, 408
class diagram, 400
ConcreteMediator class, 396

demonstration, 401–407
Friend class, 399
IMediator, 395
solution explorer view, 401
Stranger class, 399

modified implementation,
demonstration, 410–418

participants, 395, 408
real-world and computer-world

scenario, 393, 394
MemberwiseClone() member method, 42
MemberwiseClone() method, 30, 50
Memento pattern, 609

advantages, 366
concept, 355
disadvantages, 366
GoF definition, 355
implementation

class diagram, 358
CurrentMemento() and

RestoreMemento(…), 357
demonstration, 359–365
memento class, 357
Originator object, 356
solution explorer view, 359
undo operations, 365

modified implementation
class diagram, 368
client code, 367
demonstration, 369–375
solution explorer view, 369

real-world and computer-world
scenario, 356

undo operations, 366
Message priorities, 433
Method1Delegate, 539
Method chaining, 71
MobileDeviceView, 515

Index

636

Model-view-controller (MVC) pattern
advantages, 515
architecture, 496
challenges, 515
components, 496, 497
concept, 496
definition, 495
framework, 498
implementation

AddEmployeeToModel(Employee
employee), 502

applications, 497
class diagram, 503, 504
demonstration, 506–514
DisplayEnrolledEmployees(), 502
IModel, IView, and IController, 501
RemoveEmployeeFromModel

(string employeeIdToRemove)
methods, 502

Solution Explorer view, 501, 505
modified output, 518, 519
modified solution explorer view, 517
real-world and computer-world

scenario, 499, 500
variations, 497–499

Multithreading, 193
myDel(), 23, 25
myFuncDelegate(), 23, 25
MyInt static variable, 13
MyMethod(), 566, 567

N
Next() method, 340
Nonshareable flyweight interface, 194
NonterminalExpression, 439

System.NullReferenceException, 493
Null Object pattern

analysis, 482
challenges, 492
Command pattern, 483
concept, 477
definition, 477
faulty program, 478–480
implementation

analysis, 491
class diagram, 485
demonstration, 487–491
NullVehicle object, 483, 484
solution explorer view, 486

output with valid input, 481
potential fix, 482
proxies, 492
real-world and computer-world

scenario, 483
structure, 478
unwanted input analysis, 481
use cases, 491

NullVehicle class, 491
NullVehicle object, 484, 491

O
Online resources/websites, 621
Object adapters, 154, 159
Object creations, 18
Object-oriented programming (OOP),

327, 465
Object patterns, 619
Object Pool pattern, 613
Observer pattern, 610

advantages, 286
and Chain of Responsibility pattern,

284, 285
challenges, 286
concept, 269–272

Index

637

GoF definition, 269
implementation

Celebrity class, 276
class diagram, 277
demonstration, 279–284
ICelebrity interface, 275
IObserver interface, 274
solution explorer view, 278

one-to-many relationships, 285
real-world and computer-world

scenario, 273
OnlinePrice class, 221
Organizational antipatterns, 605
Originator.Memento, 368

P
PaintDecorator, 130, 132
Pattern Languages of Program Design

(PLoP), 602
PetAnimalFactory, 99
Product class, 72
Programming language, 619
Protection proxies, 119, 122
Prototype pattern

abstract method, 29
advantages, 41
challenges, 42
class diagram, 31, 37
GoF definition, 27
implementation, 29, 30

analysis, 39–41
CarFactory, 37, 38
demonstration, 33–36

instance, creation, 27
modified implementation, 36, 37
real-world and computer-world

example, 28

solution explorer view, 32
structure, 29
user-defined copy constructor, 51–54

Proxies, 113, 611, 612
Proxy pattern

concept, 113
ConcreteSubject instance, 120
disadavantage, 126
GoF definition, 113
implementation

class diagram, 116
ConcreteSubject, 115
demonstration, 117–119
DoSomeWork(), 114
solution explorer view, 117

modified implementation,
122, 123, 125

proxies, types, 119
real-world and computer-world

example, 114
use cases, 125

public static member, 7
Publisher-Subscriber (Pub-Sub)

model, 269

Q
QueueUserWorkItem method, 530

R
Rectangle class, 145
Rectangle hierarchy, 146
Refactoring, 608
RemoteControl, 316
Remote proxies, 119, 121
Return on investment (ROI), 462
RobotBody class, 164, 165

Index

638

RobotColor class, 166
RobotFacade class, 166, 167, 176
Run() method, 576

S
Send() method, 396
SetAdditionalPrice(), 29
SetColor(), 166
SetVehicleBehavior(…) method, 290
Shallow Copy vs. Deep Copy

analysis, 48–50
characteristics, program, 44–47
demonstration, 44

Simple Factory pattern, 93, 108, 612
challenges, 475
concept, 465
definition, 465
implementation

characteristics, 466, 468
class diagram, 468
demonstration, 470–474
solution explorer view, 469

object’s creation, 474
real-world and computer-world

scenario, 465, 466
static class, 475

Single responsibility, 141
Singleton class, 22, 611
Singleton pattern, 612

alternative implementation, 22–25
approach, modeling, 15, 17, 18
code segment, 14
double-checked locking, 18
GoF definition, 5
implementation

analysis, 12–14
characteristics, 6, 7

class diagram, 8
demonstration, 9–11
solution explorer view, 8

instance, 5
locking mechanism, 17
Main() method, 20
object creations, 18
real-world scenario, 5
sealed keyword, 19
Singleton class, 12, 15
thread pool, multithreading

environment, 6
use cases, 19

Smalltalk’s automatic forwarding
mechanism, 435

Smart reference, 119
SpecialPaper() method, 301, 306
StartNew() method, 566
StartUpOperations(), 59
State pattern

advantages, 392
concept, 377
dynamic Strategy pattern, 391
GoF definition, 377
implementation

class diagram, 381
demonstration, 383–389
ExecuteMuteButton(), 380
ExecuteOffButton(), 380
ExecuteOnButton(), 380
IPossibleStates, 378
solution explorer view, 382
states of TV, 379

open/close principle, 391
real-world and computer-world

scenario, 378
states of TV, 389
vs. Strategy pattern, 390, 391

Index

639

Static class, 611
Static initialization, 14
Strategy pattern, 610, 612

advantages, 298
concept, 287
disadvantages, 298
FloatBehavior, 296
FlyBehavior, 296
GoF definition, 287
implementation

class diagram, 290
context class, 289
demonstration, 292–295
FloatBehavior, 288
SetVehicleBehavior(…)

method, 290
solution explorer view, 292

inheritance, 296
real-world and computer-world

scenario, 287
Structural patterns, 617
Subsystem classes, 167
Synchronous approach, 522–525
System.NullReferenceException, 493

T
Target interface, 160
Task-based asynchronous pattern

(TAP), 522
async and await Keywords, 579–590
ContinueWith() method, 577
demonstration, 571–576
ExecuteMethodOne() and

ExecuteMethodTwo(), 571
Run() method, 576

TaskContinuationOptions, 577
TaskCreationOptions, 571

Tasks, 565–570
Television class, 222
Template Method pattern, 612

advantages, 313
modified BasicEngineering class, 307
behavioral design pattern, 312
concept, 299
disadvantages, 313
Electronics class, 308
GoF definition, 299
implementation

BasicEngineering abstract
class, 300

class diagram, 302
ComputerScience class, 301
demonstration, 303–306
DisplayCourseStructure()

method, 301
solution explorer view, 303

modified implementation, 309–312
real-world and computer-world

scenario, 299, 300
vs. Strategy pattern, 313

TerminalExpression, 439
Thread class, 525–527
ThreadPool class, 528–535
TotalObjectsCreated property, 182
TResult parameter, 24
Triangle. IRectangle interface, 145

U
undo() method, 329
UnknownErrorHandler, 425
Updates, 625, 626
UpLevel() method, 331
User-defined copy constructor, 51–54
User Interface antipatterns, 605

Index

640

V
Vehicle context class, 297
VehicleFactory factory class, 180, 195–197
Virtual proxies, 119, 121
Visitor pattern, 612, 613

abstract class, 235
vs. composite pattern, 254–267
drawbacks associated, 249
encapsulation, 250
GoF definition, 235
implementation

AddNumberToList(…), 240
class diagram, 242
demonstration coding, 244–249
IncrementNumberVisitor, 239
numberList, 240
RemoveNumberFromList(…)

method, 240
SmallNumber, 241

solution explorer view, 243
UndefinedNumber, 251
VisitBigNumbers(..) and

VisitSmallNumbers(..), 238
inheritance hierarchy, 237
open/close principle, 235
operation, 251, 253
overloading method, 250
real-world and computer-world

scenario, 238
SmallNumber and BigNumber class, 236
use cases, 249

W, X, Y, Z
WaitOne() method, 544
WildAnimalFactory, 99
Windows Presentation Foundation

(WPF), 316

Index

	Table of Contents
	About the Author
	About the Technical Reviewers
	Foreword
	Acknowledgments
	Preface
	Part I: Gang of Four Design Patterns
	Part I.A: Creational Patterns
	Chapter 1: Singleton Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Implementation
	Class Diagram
	Solution Explorer View
	Demonstration 1
	Output
	Analysis

	Q&A Session
	Alternative Implementation
	Analysis

	Q&A Session

	Chapter 2: Prototype Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Implementation
	Class Diagram
	Solution Explorer View
	Demonstration 1
	Output

	Modified Implementation
	Class Diagram
	Demonstration 2
	Output
	Analysis

	Q&A Session
	Shallow Copy vs. Deep Copy
	Demonstration 3
	Output from a Shallow Copy
	Analysis
	Output from Deep Copy
	Analysis

	Q&A Session
	Demonstration 4
	Output
	Analysis

	Chapter 3: Builder Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Implementation
	Class Diagram
	Solution Explorer View
	Demonstration 1
	Output
	Analysis

	Q&A Session
	An Alternative Implementation
	Class Diagram
	Solution Explorer View
	Demonstration 2
	Output
	Analysis

	Q&A Session

	Chapter 4: Factory Method Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Implementation
	Class Diagram
	Solution Explorer View
	Demonstration 1
	Output

	Modified Implementation 1
	Partial Demonstration 1
	Output
	Analysis

	Q&A Session
	Modified Implementation 2
	Partial Demonstration 2
	Output

	Chapter 5: Abstract Factory Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Implementation
	Class Diagram
	Solution Explorer View
	Demonstration 1
	Output

	Q&A Session

	Part I.B: Structural Patterns
	Chapter 6: Proxy Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Implementation
	Class Diagram
	Solution Explorer View
	Demonstration 1
	Output

	Q&A Session
	Demonstration 2
	Output

	Chapter 7: Decorator Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Implementation
	Class Diagram
	Solution Explorer View
	Demonstration
	Output

	Q&A Session

	Chapter 8: Adapter Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Implementation
	Class Diagram
	Solution Explorer View
	Demonstration 1
	Output
	Analysis

	Types of Adapters
	Object Adapters
	Class Adapters

	Q&A Session
	Demonstration 2
	Output
	Analysis

	Q&A Session

	Chapter 9: Facade Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Implementation
	Class Diagram
	Solution Explorer View
	Demonstration
	Output

	Q&A Session

	Chapter 10: Flyweight Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Implementation
	Class Diagram
	Solution Explorer View
	Demonstration 1
	Output
	Analysis

	Q&A Session
	Demonstration 2
	Output
	Analysis

	Chapter 11: Composite Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Implementation
	Class Diagram
	Solution Explorer View
	Demonstration
	Output

	Q&A Session

	Chapter 12: Bridge Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Implementation
	Class Diagram
	Solution Explorer View
	Demonstration 1
	Output

	Additional Implementation
	Class Diagram
	Demonstration 2
	Output

	Q&A Session

	Part I.C: Behavioral Patterns
	Chapter 13: Visitor Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Implementation
	Class Diagram
	Solution Explorer View
	Demonstration 1
	Output
	Q&A Session

	Using Visitor Pattern and Composite Pattern Together
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Demonstration 2
	Output

	Chapter 14: Observer Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Implementation
	Class Diagram
	Solution Explorer View
	Demonstration
	Output

	Q&A Session

	Chapter 15: Strategy Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Implementation
	Class Diagram
	Solution Explorer View
	Demonstration
	Output

	Q&A Session

	Chapter 16: Template Method Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Implementation
	Class Diagram
	Solution Explorer View
	Demonstration 1
	Output

	Q&A Session
	Demonstration 2
	Output

	Chapter 17: Command Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Implementation
	Class Diagram
	Solution Explorer View
	Demonstration 1
	Output

	Q&A Session
	Modified Implementation
	Demonstration 2
	Output

	Chapter 18: Iterator Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Implementation
	Class Diagram
	Solution Explorer View
	Demonstration 1
	Output
	Demonstration 2
	Output

	Q&A Session

	Chapter 19: Memento Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Implementation
	Class Diagram
	Solution Explorer View
	Demonstration 1
	Output
	Analysis

	Q&A Session
	Modified Implementation
	Class Diagram
	Solution Explorer View
	Demonstration 2
	Output

	Chapter 20: State Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Implementation
	Class Diagram
	Solution Explorer View
	Demonstration
	Output

	Q&A Session

	Chapter 21: Mediator Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Implementation
	Class Diagram
	Solution Explorer View
	Demonstration 1
	Output
	Analysis

	Q&A Session
	Modified Implementation
	Demonstration 2
	Output

	Chapter 22: Chain of Responsibility Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Implementation
	Class Diagram
	Solution Explorer View
	Demonstration
	Output

	Q&A Session

	Chapter 23: Interpreter Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Implementation
	Class Diagram
	Solution Explorer View
	Demonstration 1
	Output

	Another Implementation
	Class Diagram
	Solution Explorer View
	Demonstration 2
	Output

	Q&A Session

	Part II: Additional Design Patterns
	Chapter 24: Simple Factory Pattern
	Definition
	Concept
	Real-World Example
	Computer-World Example
	Implementation
	Class Diagram
	Solution Explorer View
	Demonstration
	Output

	Q&A Session

	Chapter 25: Null Object Pattern
	Definition
	Concept
	A Faulty Program
	Output with Valid Input
	Analysis with an Unwanted Input
	A Potential Fix
	Analysis

	Real-World Example
	Computer-World Example
	Implementation
	Class Diagram
	Solution Explorer View
	Demonstration
	Output
	Analysis

	Q&A Session

	Chapter 26: MVC Pattern
	Definition
	Concept
	Key Points to Remember
	Variation 1
	Variation 2
	Variation 3

	Real-World Example
	Computer-World Example
	Implementation
	Class Diagram
	Solution Explorer View
	Demonstration 1
	Contents in Model folder
	Contents in View folder
	Contents in Controller folder
	Client code

	Output

	Q&A Session
	Modified Output

	Chapter 27: Patterns in Asynchronous Programming
	Overview
	Using Synchronous Approach
	Demonstration 1
	Output

	Using Thread Class
	Demonstration 2
	Output
	Analysis

	Q&A Session

	Using ThreadPool Class
	Demonstration 3
	Output

	Q&A Session

	Using Lambda Expression with the ThreadPool Class
	Demonstration 4
	Output

	Using IAsyncResult Pattern
	Polling Using Asynchronous Delegates
	Demonstration 5
	Output

	Q&A Session
	Using AsyncWaitHandle of IAsyncResult
	Demonstration 6
	Output
	Analysis

	Using Asynchronous Callback
	Demonstration 7
	Output
	Analysis

	Q&A Session

	Using Event-based Asynchronous Pattern
	Demonstration 8
	Output
	Analysis
	Additional Note
	Output

	Q&A Session

	Understanding Tasks
	Demonstration 9
	Output
	Q&A Session

	Using Task-based Asynchronous Pattern (TAP)
	Demonstration 10
	Output

	Demonstration 11
	Output
	Analysis

	Q&A Session
	Using the async and await Keywords
	Demonstration 12
	Output
	Analysis

	Demonstration 13
	Output
	Analysis

	Part III: Final Thoughts on Design Patterns
	Chapter 28: Criticisms of Design Patterns
	Q&A Session

	Chapter 29: AntiPatterns
	Overview
	A Brief History of AntiPatterns
	Examples of AntiPatterns
	Types of AntiPatterns
	Q&A Session

	Chapter 30: FAQ

	Appendix A:
A Brief Overview of GoF Design Patterns
	Q&A Session

	Appendix B:
Useful Resources
	Appendix C:
The Road Ahead
	Appendix D:
Important Updates in the Second Edition
	Index

